We probe the magnetotransport properties of individual InAs nanowires in a
field effect transistor geometry. In the low magnetic field regime we observe
magnetoresistance that is well described by the weak localization (WL)
description in diffusive conductors. The weak localization correction is
modified to weak anti-localization (WAL) as the gate voltage is increased. We
show that the gate voltage can be used to tune the phase coherence length
($l_\phi$) and spin-orbit length ($l_{so}$) by a factor of $\sim$ 2. In the
high field and low temperature regime we observe the mobility of devices can be
modified significantly as a function of magnetic field. We argue that the role
of skipping orbits and the nature of surface scattering is essential in
understanding high field magnetotransport in nanowires
Unlike c-plane nitrides, "non-polar" nitrides grown in e.g. the a-plane or m-plane orientation encounter anisotropic in-plane strain due to the anisotropy in the lattice and thermal mismatch with the substrate or buffer layer. Such anisotropic strain results in a distortion of the wurtzite unit cell and creates difficulty in accurate determination of lattice parameters and solid phase group-III content (x solid ) in ternary alloys. In this paper we show that the lattice distortion is orthorhombic, and outline a relatively simple procedure for measurement of lattice parameters of non-polar group III-nitrides epilayers from high resolution x-ray diffraction measurements. We derive an approximate expression for x solid taking into account the anisotropic strain. We illustrate this using data for a-plane AlGaN, where we measure the lattice parameters and estimate the solid phase Al content, and also show that this method is applicable for m-plane structures as well.
The high light‐output efficiencies of InxGa1‐xN quantum‐well (QW)‐based light‐emitting diodes (LEDs) even in presence of a large number of nonradiative recombination centers (such as dislocations) has been explained by localization of carriers in radiative potential traps, the origins of which still remain unclear. To provide insights on the highly efficient radiative traps, spectrally resolved photoluminescence (PL) microscopy has been performed on green‐light‐emitting In0.22Ga0.78N QW LEDs, by selectively generating carriers in the alloy layers. PL imaging shows the presence of numerous inhomogeneously distributed low‐band‐gap traps with diverse radiative intensities. PL spectroscopy of a statistically relevant number of individual traps reveals a clear bimodal distribution in terms of both band‐gap energies and radiative recombination efficiencies, indicating the presence of two distinct classes of carrier localization centers within the same QW sample. Disparity in their relative surface coverage and photoemission “blinking” characteristics suggests that the deep traps originate from local compositional fluctuations of indium within the alloy, while the shallow traps arise from nanometer‐scale thickness variations of the active layers. This is further supported by Poisson–Schrödinger self‐consistent calculations and implies that radiative traps formed due to both local indium content and interface‐morphology‐related heterogeneities can coexist within the same QW sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.