We present a method for interactive computation of indirect illumination in large and fully dynamic scenes based on approximate visibility queries. While the high-frequency nature of direct lighting requires accurate visibility, indirect illumination mostly consists of smooth gradations, which tend to mask errors due to incorrect visibility. We exploit this by approximating visibility for indirect illumination with imperfect shadow maps ---low-resolution shadow maps rendered from a crude point-based representation of the scene. These are used in conjunction with a global illumination algorithm based on virtual point lights enabling indirect illumination of dynamic scenes at real-time frame rates. We demonstrate that imperfect shadow maps are a valid approximation to visibility, which makes the simulation of global illumination an order of magnitude faster than using accurate visibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.