This work is focused on the study of orthogonal cutting of long fiber composites. A model based in finite element was developed. The mechanisms of chip formation of Glass and Carbon Fiber Reinforced Polymer (FRP) composites were analyzed. Significant differences were observed when comparing machining induced damage predicted with the model for both materials. While damage extended widely ahead the interface and beneath the tool tip in the case of GFRP, damage was located in a much smaller zone in the case CFRP. The fiber orientation influences both the mechanism of chip formation and the induced subsurface damage.
This work is focused on the combined study of the evolution of tool wear, quality of machined holes and surface integrity of work-piece, in the dry drilling of alloy Ti-6Al-4V. Tool wear was studied with optical microscope and SEM-EDS techniques. The quality of machined holes was estimated in terms of geometrical accuracy and burr formation. Surface integrity involves the study of surface roughness, metallurgical alterations and microhardness tests. The end of tool life was reached because of catastrophic failure of the drill, but no significant progressive wear in cutting zone was observed previously. High hole quality was observed even near tool catastrophic failure, evaluated from the point of view of dimensions, surface roughness and burr height. However, microhardness measurements and SEM-EDS analysis of work-piece showed important microstructural changes related with a loss of mechanical properties. Depending on the application of the machined component, the state of the work-piece could be more restrictive than the tool wear, and the end of tool life should be established from the point of view of controlled damage in a work-piece.
This paper focuses on the effect of the drill geometry on the drilling of woven Carbon Fiber Reinforced Polymer composite (CFRPs). Although different geometrical effects can be considered in drilling CFRPs, the present work focuses on the influence of point angle and wear because they are the important factors influencing hole quality and machining forces. Surface quality was evaluated in terms of delamination and superficial defects. Three different point angles were tested representative of the geometries commonly used in the industry. Two wear modes were considered, being representative of the wear patterns commonly observed when drilling CFRPs: flank wear and honed cutting edge. It was found that the crossed influence of the point angle and wear were significant to the thrust force. Delamination at the hole entry and exit showed opposite trends with the change of geometry. Also, cutting parameters were checked showing the feed’s dominant influence on surface damage.
This paper focuses on the analysis of tool wear mechanisms in finishing turning of Inconel 718, one of the most used Ni alloys, both in wet and dry cutting. Cemented carbides, ceramics and CBN tools are suitable for machining Ni alloys; coated carbide tools are competitive for machining operations of Ni alloys and widely used in industry. Commercial coated carbide tools (multilayer coating TiAl/ TiAlN recommended for machining Ni alloys) were studied in this work. The feasibility of two inserts tested for dry cutting of Inconel 718 has been shown in the work. Experimental test were performed in order to analyze wear patterns evolution. It was found great influence of side cutting edge angle in tool wear mode.
CFRPs Drilling Delamination ModelingDelamination is one of the undesired effects of machining using non appropriate cutting parameters or worn drill. Finite element modeling of drilling of Carbon Fiber Reinforced Polymer (CFRP) composites is an interesting tool for damage prediction. Recently, complete modeling of the process including the rotatory movement of the drill, penetration in the composite plate and element erosion has been developed in the scientific literature. Computational cost of these complex models is a great disadvantage when comparing them with simplified models that consider the drill acting like a punch that pierces the laminate. In this paper both complete and simplified models were developed and compared in terms of delamination prediction. The simplified model, presenting reduced computational cost, slightly overestimates the delamination factor when compared with the complex model. The influence on delamination of thrust force, clamping area at the bottom surface of the laminate and the stacking sequence is studied using the simplified model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.