Known coherent metasurfaces control interference of waves of a given frequency with other coherent waves at the same frequency, either illuminating from a different direction or created as intermodulation products. In this paper, we introduce a class of metasurfaces that are modulated in time coherently with the illuminating radiation. Importantly, such modulation opens a possibility to control reflection, absorption, and transmission at multiple frequencies, including illuminations by two or more incoherent waves. In particular, we study dynamic resistive layers and show how to use them to design thin multi-frequency perfect absorbers that overcome the bandwidth limit for static linear absorbers. Furthermore, we demonstrate possibilities of remote tuning of the absorption level. We hope that this work opens up novel avenues in wave engineering using coherent modulation of metasurface parameters.
Here, we study the interference phenomena produced in time-modulated metasurfaces when they are illuminated by multiple harmonics opening a new paradigm of coherent time-modulated metasurfaces. In particular, we obtain perfect absorption at multiple frequencies by inducing slow time modulation of a resistive sheet. Also, it will be shown that it is possible to fully tune the absorption by properly designing the modulation parameters.
Temporally varying electromagnetic media have been extensively investigated recently to unveil new means for controlling light. However, spin-dependent phenomena in such media have not been explored thoroughly. Here, we reveal the existence of spin-dependent phenomena at a temporal interface between chiral and dielectric media. In particular, we show theoretically and numerically that due to the material discontinuity in time, linearly polarized light is split into forward-propagating right-handed and left-handed circularly polarized waves having different angular frequencies and the same phase velocities. This salient effect allows complete temporal separation of the two spin states of light with high efficiency. In addition, a phenomenon of spin-dependent gain/loss is observed. Furthermore, we show that when the dielectric medium is switched back to the original chiral medium, the right- and left-handed circularly polarized light waves (with different angular frequencies) merge to form a linearly polarized wave. Our findings extend spin-dependent interactions of light from space to space-time.
The operational bandwidth of resonant circuits is limited by the resonator's size, which is known as the Chu limit. This limit restricts miniaturization of antennas, as the antenna bandwidth is inversely proportional to its size. Here, we propose slow time modulation of resistive elements to engineer bandwidth of small antennas. The temporal modulation of resistance induces virtual impedance that is fully controlled by the modulation parameters. We show how the virtual impedance can be used to optimize the frequency response of a resonant circuit, leading to enhanced matching at multiple frequencies simultaneously. We experimentally verify the proposed technique, demonstrating enhancement of radiation of a broadband modulated signal radiated by a small antenna.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.