Nowadays, natural fiber is an interesting option and it is the most widely applied fiber in composite technology. The natural fibers are used in most of the industries and are increasingly being considered as reinforcements for polymer-matrix composites because they are perceived to have sustainability value. This research paper aims to enlighten the existing development in natural fiber composites in automotive applications. Additionally, this research paper reviews the related papers from the year 2006 until 2013. Finally, a summary of selected products that have been identified by car manufacturers were identified.
The aim of this paper was the effects of different fiber size on tensile and flexural properties. Preparation of thermoset unsaturated polyester reinforced with particle Bertam (Eugeissona tristis) was done by hand layout method. Bertam/polyester composites containing Bertam fiber of different sizes, i.e., 15, 120 and 284 μm were prepared. For each composite, eight specimens were tested to evaluate the mechanical properties. It was found that composite reinforced with Bertam having the shortest fiber length, i.e, 15 μm showed the highest tensile and flexural modulus, which were 204.14 MPa and 1826.78 MPa, respectively.
In this study, a computer program for calculating fatigue life of component is developed and introduced in LS-PrePost software. The program is written in Fortran programming language and the fatigue life equations used is taken from well-published literature. The materials covered are steel and aluminum. The developed program is able to read stress, strain and element values from d3plot and the keyword file. Having extracted the output from d3plot and keyword file, the fatigue life is then calculated and presented into a separate file called FATIGUE. The integration of output from FATIGUE will is displayed in LS-PrePost. Finally, the results of fatigue life contour are successfully displayed through LS-PrePost.
This paper presents the performance of Aluminium Alloy side door subjected to side pole impact test. Aluminium Alloy is used in order to reduce the overall car weight. Therefore further improvements of the Aluminium Alloy side door system were carried out to obtain similar crash performance with the conventional steel side door system. The main crash performance properties are the internal energy, bending displacement, and mass. These properties were used to simulate the pole impact test using LS-DYNA Finite Element software. The improvements techniques used involved parameters such as thickness variation of the parts, ribs addition, beam shape variations, and combination of the factors. From the tests, three designs which include combination of parameters have met the target requirements. Thus, the use of Aluminium Alloy in side door system is acceptable provided there are improvements regarding the crash performance.
The aim of this study is to analyze the effect of steel and composite material on pedestrian head injury criteria of hood system. The hood is made of mild steel and aluminum, e-glass/epoxy composite and carbon epoxy composite are studied and characterized by impact modeling using LS-DYNA V971 in accordance with United States New Car Assessment Program (US-NCAP) frontal impact velocity and based on European Enhanced Vehicle-safety Committee. The most important variable of this structure are mass, material, internal energy, and Head Injury Criterion (HIC). The results are compared with hood made of mild steel. Three types of materials are used which consists of mild steel as reference materials, Aluminum AA5182, E-glass/epoxy composite and carbon fiber/epoxy composite with four different fiber configurations. The in-plane failure behaviors of the composites were evaluated by using Tsai Wu failure criterion. The results for the composite materials are compared to that of steel to find the best material with lowest HIC values. In order to evaluate the protective performance of the baseline hood, the Finite Element models of 50th percentile an adult pedestrian dummy is used in parallel to impact the hood. It was found that aluminum AA5182 hood can reduce the Head Injury Criterion (HIC) by comparing with the baseline hood. For pedestrian crash, it is observed that Aluminum AA5182 hood gave the lowest HIC value with 549.70 for HIC15 and 883.00 for HIC36 followed by steel hood with 657.40 for HIC15 and 980.90 for HIC36, e-glass/epoxy composite hood with 639.60 for HIC15 and 921.70 for HIC36 and carbon/epoxy composite hood with 1197.00 for HIC15 and 1424.00 for HIC36.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.