InP/In0.53Ga0.47As heterojunction bipolar transistors with high current gain for optoelectronic applications place stringent requirements on the ohmic contact to the base layer of moderately doped (p < 1×1019 cm−3) In0.53Ga0.47As. Contact resistivity should be <l×10−6 Ωcm2 and low depth of penetration is necessary considering the small base thickness of approximately 100 nm. The authors have recently presented data on Pd/Zn/Au/LaB6/Au contacts on p-In0.53Ga0.47As (doped to 4×1018 cm−3) with low contact resistivities of l×10−6 Ωcm2. In this paper, details are given on the optimization of the contact composition and annealing conditions of the metallization that resulted in shallow and low-resistive contacts. Alternatively, it is shown that Au-free Pd/Zn/Sb/Pd contacts on p-In0.53Ga0.47As have exhibited even lower resistivities, i.e. 3-6×10−7 Ωcm2. Backside SIMS measurements revealed a depth of penetration as low as 20 nm for this contact scheme. Aging tests at temperatures of 300 - 400 °C have demonstrated that the electrical characteristics of both types of metallization were sufficiently stable to withstand the typical processing steps for device passivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.