Over the past few years there has been much interest in the development of three-dimensional dosimeters to determine the complex absorbed dose distribution in modern radiotherapy techniques such as IMRT and IGRT. In routine methods used for three-dimensional dosimetry, polymer gels are commonly used. Recently, a novel transparent polymer dosimeter, known as PRESAGE, has been introduced in which a radiochromic color change is observed upon radiation. PRESAGE has some advantages over usual polymer gel dosimeters. It has been noted that the sensitivity of PRESAGE can be changed when different amounts of the components are used for its fabrication. This study has focused on the assessment of dosimetric characteristics of PRESAGE for various amounts of components in its formulation. To achieve this, PRESAGE dosimeters were fabricated using various amounts of their constituting components. Then the dosimeters were irradiated to (60)Co gamma photons for a range of radiation doses from 0 to 50 Gy. Consequently, the light absorption changes of the dosimeters were measured by a spectrophotometer at different post-irradiation time periods. It was generally observed that as the concentration of the radical initiator is increased, the PRESAGE dosimeter sensitivity is increased while its stability is decreased. Furthermore, it was noted that with the high concentration of the radical initiator and leuco dye, the sensitivity of PRESAGE is decreased.
Background: Accurate small radia on field dosimetry is essen al in modern radiotherapy techniques such as stereotac c radiosurgery (SRS) and intensity modulated radiotherapy (IMRT). Precise measurement of dosimetric parameters such as beam profile, percentage depth doses and output factor of these beams are complicated due to the electron disequilibrium and the steep dose gradients. In the present work the MAGIC polymer gel was used for dosimetry of small circular photon beams. The results of MAGIC were compared with EBT2 measurements and Monte Carlo (MC) calcula ons. Materials and Methods: Experimental measurements were made by men oned dosimeters in four small field sizes 5, 10, 20 and 30 mm. The BEAMnrc code based on EGSnrc was used for simula on to calculate dosimetric parameters at these small fields. The phantoms were irradiated in a 6 MV photon beam Varian 2100C linear accelerator at SSD=100 cm. gel readout performed by 3 Tesla MRI scanner. Results: The results showed that the Percent depth dose (PDD) values measured and calculated by EBT2 film and MC had maximum local differences 4% and 5% with PDD values measured by MAGIC for field size of 5mm respec vely. These differences decreased for larger field sizes. The measurements of output factor and penumbra (80%-20%) and (90%-10%) showed good agreement between the measurements and MC calcula on. Conclusion: This study showed that the MAGIC polymer gel based on high resolu on MRI images is useful detector for small field dosimetry but its agreement with MC is less than agreement of EBT2 film with MC.
Polymer gel dosimeters offer a practical solution to 3D dose verification for conventional radiotherapy as well as intensity-modulated and stereotactic radiotherapy. In this study, EGSnrc calculated and PAGAT polymer gel dosimeter measured dose volume histograms (DVHs) for single-shot irradiations of the Gamma Knife (GK) unit were used to investigate the effects of the presence of inhomogeneities on 3D dose distribution. The head phantom was a custom-built 16 cm diameter Plexiglas sphere. Inside the phantom, there is a cubic cutout for inserting the gel vials and another cutout for inserting the inhomogeneities. Following irradiation with the GK unit, the polymer gel phantoms were scanned with a 1.5 T MRI scanner. Comparing the results of measurement in homogeneous and heterogeneous phantoms revealed that inserting inhomogeneities inside the homogeneous phantom did not cause considerable disturbances on dose distribution in irradiation with 8 mm collimator within low isodose levels (< 50%), which is essential for the dose sparing of sensitive structures. The results of simulation for homogeneous and inhomogeneous phantoms in irradiation with 18 mm collimator of the GK unit showed 23.24% difference in DVH within 90%-100% relative isodose level and also revealed that a significant part of the target (28.56%) received relative doses higher than the maximum dose, which exceeds the acceptance criterion (5%). Based on these results it is concluded that the presence of inhomogeneities inside the phantom can cause considerable errors in dose calculation within high isodose levels with respect to LGP prediction which assumes that the target is a homogeneous material. Moreover, it is demonstrated that the applied MC code is an accurate and stand-alone tool for 3D evaluation of dose distribution in irradiation with the GK unit, which can provide important, 3D plan evaluation criteria used in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.