Machine learning techniques lend themselves as promising decision-making and analytic tools in a wide range of applications. Different ML algorithms have various hyperparameters. In order to tailor an ML model towards a specific application, a large number of hyper-parameters should be tuned. Tuning the hyper-parameters directly affects the performance (accuracy and run-time). However, for large-scale search spaces, efficiently exploring the ample number of combinations of hyperparameters is computationally challenging. Existing automated hyper-parameter tuning techniques suffer from high time complexity. In this paper, we propose HyP-ABC, an automatic innovative hybrid hyper-parameter optimization algorithm using the modified artificial bee colony approach, to measure the classification accuracy of three ML algorithms, namely random forest, extreme gradient boosting, and support vector machine. Compared to the state-of-the-art techniques, HyP-ABC is more efficient and has a limited number of parameters to be tuned, making it worthwhile for real-world hyper-parameter optimization problems. We further compare our proposed HyP-ABC algorithm with state-of-the-art techniques. In order to ensure the robustness of the proposed method, the algorithm takes a wide range of feasible hyper-parameter values, and is tested using a real-world educational dataset.
MIDFIELD dataset is a unit-record longitudinal dataset for undergraduate students from 16 universities. MIDFIELD contains all the information that appears in students' academic records, including demographic data (sex, age, and race/ethnicity) and information about major, enrollment, graduation, and school and pre-school performance.
<p>Machine learning techniques lend themselves as promising decision-making and analytic tools in a wide range of applications. Different ML algorithms have various hyper-parameters. In order to tailor an ML model towards a specific application working at its best, its hyper-parameters should be tuned. Tuning the hyper-parameters directly affects the performance. However, for large-scale search spaces, efficiently exploring the ample number of combinations of hyper-parameters is computationally expensive. Many of the automated hyper-parameter tuning techniques suffer from low convergence rates and high experimental time complexities. In this paper, we propose HyP-ABC, an automatic innovative hybrid hyper-parameter optimization algorithm using the modified artificial bee colony approach, to measure the classification accuracy of three ML algorithms: random forest, extreme gradient boosting, and support vector machine. In order to ensure the robustness of the proposed method, the algorithm takes a wide range of feasible hyper-parameter values and is tested using a real-world educational dataset. Experimental results show that HyP-ABC is competitive with state-of-the-art techniques. Also, it has fewer hyper-parameters to be tuned than other population-based algorithms, making it worthwhile for real-world HPO problems.</p>
MIDFIELD dataset is a unit-record longitudinal dataset for undergraduate students from 16 universities. MIDFIELD contains all the information that appears in students' academic records, including demographic data (sex, age, and race/ethnicity) and information about major, enrollment, graduation, and school and pre-school performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.