THESEUS is a space mission concept aimed at exploiting Gamma-Ray Bursts for investigating the early Universe and at providing a substantial advancement of multi-messenger and time-domain astrophysics. These goals will be achieved through a unique combination of instruments allowing GRB and X-ray transient detection over a broad field of view (more than 1sr) with 0.5-1 arcmin localization, an energy band extending from several MeV down to 0.3 keV and high sensitivity to transient sources in the soft X-ray domain, as well as on-board prompt (few minutes) followup with a 0.7 m class IR telescope with both imaging and spectroscopic capabilities. THESEUS will be perfectly suited for addressing the main open issues in cosmology such as, e.g., star formation rate and metallicity evolution of the inter-stellar and intra-galactic medium up to redshift ∼10, signatures of Pop III stars, sources and physics of reionization, and the faint end of the galaxy luminosity function. In addition, it will provide unprecedented capability to monitor the X-ray variable sky, thus detecting, localizing, and identifying the electromagnetic counterparts to sources of gravitational radiation, which may be routinely detected in the late '20s / early '30s by next generation facilities like aLIGO/ aVirgo, eLISA, KAGRA, and Einstein Telescope. THESEUS will also provide powerful synergies with the next generation of multi-wavelength observatories (e.g., LSST, ELT, SKA, CTA, ATHENA).
Free-floating planets are recently drawing a special interest of the scientific community. Gravitational microlensing is up to now the exclusive method for the investigation of free-floating planets, including their spatial distribution function and mass function. In this work, we examine the possibility that the future Euclid space-based observatory may allow to discover a substantial number of microlensing events caused by free-floating planets. Based on latest results about the free-floating planet mass function in the mass range [10 −5 , 10 −2 ]M ⊙ , we calculate the optical depth towards the Galactic bulge as well as the expected microlensing rate and find that Euclid may be able to detect hundreds to thousands of these events per month. Making use of a synthetic population, we also investigate the possibility of detecting parallax effect in simulated microlensing events due to free-floating planets and find a significant efficiency for the parallax detection that turns out to be around 30%.
Context. The lag-luminosity relation (LLR) provides a way of estimating GRB luminosity by measuring the spectral lags between different energy bands. Aims. We want to understand the origin of the LLR and test its validity. This appears especially important if the LLR is to be used as a distance indicator. Methods. We perform a linear analysis of the lag between two spectral bands. The lag is obtained as the time interval between the maxima of a given pulse in the two bands. Results. We get a simple expression for the lag, which shows in a very simple way how it is related to the spectral evolution of the burst via the variation of the peak energy and spectral indices. When this expression is coupled to the Amati relation, it leads to a LLR that agrees with the observational results only if the burst's spectral evolution is limited to a decrease in peak energy during pulse decay. However, when the variation of the spectral indices is also taken into account, the predicted LLR differs from the observed one. Conclusions. We briefly discuss some ways to solve this problem, such as a possible correlation between pulse spikiness and burst luminosity.
Gamma-ray Bursts (GRBs) are the most powerful transients in the Universe, over–shining for a few seconds all other γ-ray sky sources. Their emission is produced within narrowly collimated relativistic jets launched after the core–collapse of massive stars or the merger of compact binaries. THESEUS will open a new window for the use of GRBs as cosmological tools by securing a statistically significant sample of high-z GRBs, as well as by providing a large number of GRBs at low–intermediate redshifts extending the current samples to low luminosities. The wide energy band and unprecedented sensitivity of the Soft X-ray Imager (SXI) and X-Gamma rays Imaging Spectrometer (XGIS) instruments provide us a new route to unveil the nature of the prompt emission. For the first time, a full characterisation of the prompt emission spectrum from 0.3 keV to 10 MeV with unprecedented large count statistics will be possible revealing the signatures of synchrotron emission. SXI spectra, extending down to 0.3 keV, will constrain the local metal absorption and, for the brightest events, the progenitors’ ejecta composition. Investigation of the nature of the internal energy dissipation mechanisms will be obtained through the systematic study with XGIS of the sub-second variability unexplored so far over such a wide energy range. THESEUS will follow the spectral evolution of the prompt emission down to the soft X–ray band during the early steep decay and through the plateau phase with the unique ability of extending above 10 keV the spectral study of these early afterglow emission phases.
Microlensing and pixel-lensing surveys play a fundamental role in the searches for galactic dark matter and in the study of the galactic structure. Recent observations suggest the presence of a population of old white dwarfs with high proper motion, probably in the galactic halo, with local mass density in the range 1.3 × 10 −4 − 4.4 × 10 −3 M ⊙ pc −3 , in addition to the standard galactic stellar disk and dark halo components. Investigation of the signatures on microlensing results towards the LMC of these different lens populations, with particular emphasis to white dwarfs, is the main purpose of the present paper. This is done by evaluating optical depth and microlensing rate of the various lens populations and then calculating through a Montecarlo program, the probability that a lens which has caused a microlensing event of duration t E belongs to a certain galactic population. Data obtained by the MACHO Collaboration allow us to set an upper bound of 1.6 × 10 −3 M ⊙ pc −3 to the local mass density of white dwarfs distributed in spheroidal models, while for white dwarfs in disk models all values for the local mass density are in agreement with observational results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.