In this paper, a receding-horizon multi-step optimization is proposed to correct non viable transmission voltages and prevent long-term voltage instability. The proposed control scheme is based on real-time control, inspired by model predictive control, and steady state power-flow-based equations. In order to anticipate load behavior and avoid using dynamic equations in the control scheme, explicit formulations are used to model evolution of load with time. The simulation results of the proposed technique are presented on the Nordic32 test system.
Abstract-In this paper, a chance-constrained optimization (CCO) is presented to handle uncertainty in control of transmission voltages. A control scheme is proposed using a steady-state system model to achieve the goal of online voltage control and preventing long-term voltage instability. In order to model steady-state system response, the long-term model of governors and Automatic Voltage Regulators are employed in the control scheme. The Nordic32 test system is selected to show the simulation results of the proposed technique.Index Terms-Chance-constrained optimization (CCO), long-term voltage instability, voltage control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.