Intrauterine growth restriction (IUGR) increases the risk of serious adult morbidities such as hypertension. In an IUGR rat model of hypertension, we reported a persistent decrease in kidney 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) mRNA and protein levels from birth through postnatal (P) day 21. This enzyme deficiency can lead to hypertension by limiting renal glucocorticoid deactivation. In the present study, we hypothesized that IUGR affects renal 11beta-HSD2 epigenetic determinants of chromatin structure and alters key transcription factor binding to the 11beta-HSD2 promoter in association with persistent downregulation of its mRNA expression. To test this hypothesis, we performed bilateral uterine artery ligation on embryonic day 19.5 pregnant rats and harvested kidneys at day 0 (P0) and P21. Key transcription factors that can affect 11beta-HSD2 expression include transcriptional enhancers specificity protein 1 (SP1) and NF-kappaB p65 and transcriptional repressors early growth response factor (Egr-1) and NF-kappaB p50. Our most important findings were as follows: 1) IUGR significantly decreased SP1 and NF-kappaB (p65) binding to the 11beta-HSD2 promoter in males, while it increased Egr-1 binding in females and NF-kappaB (p50) binding in males; 2) IUGR increased CpG methylation status, as well as modified the pattern of methylation in several CpG sites of 11beta-HSD2 promoter at P0 also in a sex-specific manner; and 3) IUGR decreased trimethylation of H3K36 in exon 5 of 11beta-HSD2 at P0 and P21 in both genders. We conclude that IUGR is associated with altered transcriptional repressor/activator binding in connection with increased methylation in the 11beta-HSD2 promoter region in a sex-specific manner, possibly leading to decreased transcriptional activity. Furthermore, IUGR decreased trimethylation of H3K36 of the 11beta-HSD2 gene in both genders, which is associated with decreased transcriptional elongation. We speculate that alterations in transcription factor binding and chromatin structure play a role in in utero reprogramming.
Low nephron endowment secondary to intrauterine growth restriction (IUGR) results in compensatory hypertrophy of the remaining glomeruli, which in turn is associated with hypertension. However, gender differences exist in the response of the kidney to injury, and IUGR female offspring seems protected from an unfavorable outcome. We previously reported differences in gender-specific gene expression in the IUGR kidney as well as increased circulating corticosterone levels following uteroplacental insufficiency (UPI). Vascular endothelial growth factor (VEGF), which is critical for renal development, is an important candidate in the IUGR kidney since its expression can be regulated by sex-steroids and glucocorticoids. We hypothesize that IUGR leads to altered kidney VEGF expression in a gender-specific manner. Following uterine ligation in the pregnant rat, UPI decreases renal VEGF levels in male and female IUGR animals at birth and through postnatal day 21. However, by day 120 of life, IUGR females have increased kidney VEGF expression, not present in the IUGR males. In addition, IUGR males exhibit increased serum testosterone levels as well as proteinuria. These findings are intriguing in light of the difference in glomerular hypertrophy observed: IUGR males show increased glomerular area when compared to IUGR females. In this model characterized by decreased nephron number and adult onset hypertension, UPI decreases renal VEGF expression during nephrogenesis. Our most intriguing finding is the increased renal VEGF levels in adult IUGR females, associated with a more benign phenotype. We suggest that the mechanisms underlying renal disease in response to IUGR are most likely regulated in a gender specific manner.
Clinical and animal studies indicate that intrauterine growth restriction (IUGR) following uteroplacental insufficiency (UPI) reduces nephron number and predisposes toward renal insufficiency early in life and increased risk of adult-onset hypertension. In this study, we hypothesized that the inducible enzyme cyclooxygenase-2 (COX-2), a pivotal protein in nephrogenesis, constitutes a mechanism through which UPI and subsequent glucocorticoid overexposure can decrease nephron number. We further hypothesized that UPI downregulates the key enzyme 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2), which converts corticosterone to inert 11-dehydrocorticosterone, thereby protecting both the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR) from the actions of corticosterone. Following bilateral uterine ligation on the pregnant rat, UPI significantly decreased renal COX-2, 11beta-HSD2, and GR mRNA and protein levels, but upregulated expression of MR at birth. At day 21 of life, 11beta-HSD2, GR, and also MR mRNA and protein levels were downregulated. UPI did not affect blood pressures (BP) at day 21 of life but significantly increased systolic BP in both genders at day 140. We conclude that in our animal model, UPI decreases fetal COX-2 expression during a period of active nephrogenesis in the IUGR rat, which is also characterized by decreased nephron number and adult-onset hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.