Emission inventories (EIs) are the fundamental tool to monitor compliance with greenhouse gas (GHG) emissions and emission reduction commitments. Inventory accounting guidelines provide the best practices to help EI compilers across different countries and regions make comparable, national emission estimates regardless of differences in data availability. However, there are a variety of sources of error and uncertainty that originate beyond what the inventory guidelines can define. Spatially explicit EIs, which are a key product for atmospheric modeling applications, are often developed for research purposes and there are no specific guidelines to achieve spatial emission estimates. The errors and uncertainties associated with the spatial estimates are unique to the approaches employed and are often difficult to assess. This study compares the global, high-resolution (1 km), fossil fuel, carbon dioxide (CO 2), gridded EI Open-source Data Inventory for Anthropogenic CO 2 (ODIAC) with the multiresolution, spatially explicit bottom-up EI geoinformation technologies, spatio-temporal approaches, and full carbon account for improving the accuracy of GHG inventories (GESAPU) over the domain of Poland. By taking full advantage of the data granularity that bottom-up EI offers, this study characterized the potential biases in spatial disaggregation by emission sector (point and non-point emissions) across different scales (national, subnational/regional, and urban policy-relevant scales) and identified the root causes. While two EIs are in agreement in total and sectoral emissions (2.2% for the total emissions), the emission spatial patterns showed large differences (10~100% relative differences at 1 km) especially at the urbanrural transitioning areas (90-100%). We however found that the agreement of emissions over urban areas is surprisingly good compared with the estimates previously reported for US cities. This paper also discusses the use of spatially explicit EIs for climate mitigation applications beyond the common use in atmospheric modeling. We conclude with a discussion of current and future challenges of EIs in support of successful implementation of GHG emission
Greenhouse gas (GHG) inventories at national or provincial levels include the total emissions as well as the emissions for many categories of human activity, but there is a need for spatially explicit GHG emission inventories. Hence, the aim of this research was to outline a methodology for producing a high-resolution spatially explicit emission inventory, demonstrated for Poland. GHG emission sources were classified into point, line, and area types and then combined to calculate the total emissions. We created vector maps of all sources for all categories of economic activity covered by the IPCC guidelines, using official information about companies, the administrative maps, Corine Land Cover, and other available data. We created the algorithms for the disaggregation of these data to the level of elementary objects such as emission sources. The algorithms used depend on the categories of economic activity under investigation. We calculated the emissions of carbon, nitrogen sulfure and other GHG compounds (e.g., CO 2 , CH 4 , N 2 O, SO 2 , NMVOC) as well as total emissions in the CO 2 -equivalent. Gridded data were only created in the final stage to present the summarized emissions of very diverse sources from all categories. In our approach, information on the administrative assignment of corresponding emission sources is retained, which makes it possible to aggregate the final results to different administrative levels including municipalities, which is not possible using a traditional gridded emission approach. We demonstrate that any grid size can be chosen to match the aim of the spatial inventory, but not less than 100 m in this example, which corresponds to the coarsest resolution of the input datasets. We then considered the uncertainties in the statistical data, the calorific values, and the emission factors, with symmetric and asymmetric (lognormal) distributions. Using the Monte Carlo method, uncertainties, expressed using 95% confidence intervals, were estimated for high point-type emission sources, the provinces, and the subsectors. Such an approach is flexible, provided the data are available, and can be applied to other countries.
Industrial processes cause significant emissions of greenhouse gases (GHGs) to the atmosphere and, therefore, have high mitigation and adaptation potential for global change. Spatially explicit (gridded) emission inventories (EIs) should allow us to analyse sectoral emission patterns to estimate the potential impacts of emission policies and support decisions on reducing emissions. However, such EIs are often based on simple downscaling of national level emission estimates and the changes in subnational emission distributions do not necessarily reflect the actual changes driven by the local emission drivers. This article presents a high-definition, 100-m resolution bottom-up inventory of GHG emissions from industrial processes (fuel combustion activities in energy and manufacturing industries, fugitive emissions, mineral products, chemical industries, metal production and food and drink industries), which is exemplified for data for Poland. The study objectives include elaboration of the universal approach for mapping emission sources, algorithms for emission disaggregation, Mitigation and Adaptation Strategies for Global Change (2019) 24:907-939 https://doi.estimation of emissions at the source level and uncertainty analysis. We start with IPCCcompliant national sectoral GHG estimates made using Polish official statistics and, then, propose an improved emission disaggregation algorithm that fully utilises a collection of activity data available at the national/provincial level to the level of individual point and diffused (area) emission sources. To ensure the accuracy of the resulting 100-m resolution emission fields, the geospatial data used for mapping emission sources (point source geolocation and land cover classification) were subject to thorough human visual inspection. The resulting 100-m emission field even holds cadastres of emissions separately for each industrial emission category. We also compiled cadastres in regular grids and, then, compared them with the Emission Database for Global Atmospheric Research (EDGAR). A quantitative analysis of discrepancies between both results reveals quite frequent misallocations of point sources used in the EDGAR compilation that considerably deteriorate high-resolution inventories. We also use a Monte-Carlo method-based uncertainty assessment that yields a detailed estimation of the GHG emission uncertainty in the main categories of the analysed processes. We found that the above-mentioned geographical coordinates and patterns used for emission disaggregation have the greatest impact on the overall uncertainty of GHG inventories from the industrial processes. We evaluate the mitigation potential of industrial emissions and the impact of separate emission categories. This study proposes a method to accurately quantify industrial emissions at a policy relevant spatial scale in order to contribute to the local climate mitigation via emission quantification (local to national) and scientific assessment of the mitigation effort (national to global). Apart from the abov...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.