We report about investigations of time-dependent structural modifications in single-crystal graphene due to laser irradiation even at moderate power levels of 1 mW in a diffraction-limited spot. The modifications have been characterized by in situ scanning confocal Raman spectroscopy, atomic force height microscopy, and transport studies. The time evolution of the Raman spectrum reveals two different effects: on a short-time scale, dopants, initially present on the flake, are removed. The longer time scale behavior points to a laser induced gradual local decomposition of single-crystal graphene into a network of interconnected nanocrystallites with a characteristic length scale of approximately 10 nm due to bond breaking. The broken bonds offer additional docking sites for adsorbates as confirmed in transport and AFM height studies. These controlled structural modifications may for instance be valuable for enhancing the local reactivity, trimming graphene based gas sensors and generating spatially varying doping patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.