Conducting polymers (CPs), thanks to their unique properties, structures made on-demand, new composite mixtures, and possibility of deposit on a surface by chemical, physical, or electrochemical methodologies, have shown in the last years a renaissance and have been widely used in important fields of chemistry and materials science. Due to the extent of the literature on CPs, this review, after a concise introduction about the interrelationship between electrochemistry and conducting polymers, is focused exclusively on the following applications: energy (energy storage devices and solar cells), use in environmental remediation (anion and cation trapping, electrocatalytic reduction/oxidation of pollutants on CP based electrodes, and adsorption of pollutants) and finally electroanalysis as chemical sensors in solution, gas phase, and chiral molecules. This review is expected to be comprehensive, authoritative, and useful to the chemical community interested in CPs and their applications.
Electron transfer (ET) through two configurations of double-stranded (ds)-DNA was investigated by the attachment of a ferrocenoyl (Fc)-labeled and thiol-labeled DNA to Au electrodes. The first configuration positions the Fc moiety on the same strand as the thiolate, whereas the second configuration positions the Fc group on the complementary strand. The subtle difference in structure leads to a difference in E0' values (29 mV) and in ET rate constants (25 vs 115 s-1). The results have led to a further understanding of electron transfer in ds-DNA, and several models of ET are proposed.
Important aspects of the electrochemical reduction of a series of substituted arene sulfenyl chlorides are investigated. A striking change is observed in the reductive cleavage mechanism as a function of the substituent on the aryl ring of the arene sulfenyl chloride. With p-substituted phenyl chlorides a "sticky" dissociative ET mechanism takes place where a concerted ET mechanism leads to the formation of a radical/anion cluster before decomposition. With o-nitropheyl sulfenyl substituted chlorides a stepwise mechanism is observed where through space S...O interactions play an important role stabilizing both the neutral molecules and their reduced forms. Disulfides are generated through a nucleophilic reaction of the two-electron reduction produced anion (arenethiolate) on the parent molecule. The dissociative electron transfer theory, as well as its extension to the case of strong in-cage interactions between the produced fragments, along with the gas phase chemical quantum calculations results helped rationalize both the observed change in the ET mechanism and the occurrence of the "sticky dissociative" ET mechanism. The radical/anion pair interactions have been determined both in solution as well as in gas phase. This study shows that despite the low magnitude of in-cage interactions in acetonitrile as compared to in the gas phase, their existence strongly affects the kinetics of the involved reactions. It also shows that, as expected, these interactions are reinforced by the existence of strong electron-withdrawing substituents.
Triphenylamines with one, two, or three 3,4-ethylenedioxythiophene (EDOT) substituents attached to the para-phenyl carbons have been prepared via metal-catalyzed cross-coupling reactions. The amines with two or three EDOTs (compounds 4 and 3, respectively) can be oxidatively electropolymerized (via intermolecular coupling between two EDOT groups at their respective a-carbon atoms) to afford stable, linear and cross-linked polymers, respectively. The linear polymer (poly-4) exhibits two resolved, reversible oxidation waves corresponding to the oxidation of the amine and EDOT centers. These two oxidation processes occur at the same potential in cross-linked poly-3 giving rise to one broad, reversible oxidation wave. The observation of redox processes associated with the EDOT-based chromophores contrasts the properties of related (non-EDOTcontaining) polymers for which the thiophene backbone serves only as a conjugated 'linker'. These polymers are highly stable to electrochemical oxidation and can be electrochemically cycled hundreds of times with no detectable decomposition; color changes accompany the redox processes, interconverting between reduced (yellow) and oxidized (green-blue) forms.
4-Nitrophenyl sulfenyl chloride was used as a new precursor for the formation of densely packed aromatic SAMs on gold. The adsorption involves the reductive dissociation of the S-Cl bond. A well-ordered row structure corresponding to a √3 × 4 phase with a molecular area of 27.8 Å(2) is obtained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.