<p>Analog simulations of space missions transform from educational activities to advanced interdisciplinary research related with future Moon and Mars exploration. Here we present results from Analog Simulations Campaign 2020 at Analog Astronaut Training Center in Poland. We organised 10 analog missions starting with six missions BRIGHT engaging 9 students, mission ETERNITY, DESTINY, and two EMMPOL missions engaging 18 people, what gives 27 analog astronauts in total for the whole campaign. Analog astronauts were supported by the Mission Control Center. Several experts from various disciplines - professional researchers, participated remotely in this project. Analog astronaut samples of serum, urine, stool and saliva were transported and analysed in professional laboratories of Collegium Medicum at Jagiellonian University in Krak&#243;w, Poland.&#160;</p><p>Organised analog simulations had a common scientific and operational objectives. The main aim was to study life in isolation to support the general public in pandemic times. Missions were organised in specially equipped with environmental sensors isolated AATC habitat in the South of Poland. We collected multiple physiological and psychological data related with stress, motivation and efficiency of analog astronauts during their missions. We observed changes in physical activity, appetite, circadian rhythms, mood, and motivation, as well as interesting results from physiological samples. We defined the most critical aspects of life in isolation and tested putative solutions for improvement of the comfort of such type of existence. Based on our 4 month studies, we characterised a list of common problems strictly related with life in isolation, which were observed in tested groups. At the end, we propose solutions to improve life and well-being in restricted spaces.</p>
Analog space missions in Poland include international scientific, technological, and business projects designed and realized by a private research company Analog Astronaut Training Center Ltd. (AATC) devoted to the future Moon and Mars exploration. Growing experience in educational aspect of the training as well as continuous development of the habitat and its professional space science laboratory equipment correspond to increased interest of educational organizations, universities, and individual students. We serve unique practical platform for space engineering, space master, and even space doctoral theses. In addition to a wide range of training courses offered for future astronauts, for example, diving, skydiving, rocket workshops, and stratospheric missions, AATC provides a private laboratory to simulate the space environment. It carries out scientific experiments focused on biology and space medicine, as well as addressing several multidisciplinary issues related to the Moon and Mars exploration, including space mining. The main goal of each our analog simulation is to get publishable results, what means that our analog astronauts obtain not only certification of completion of the training but also ability to continue studies and to perform it individually. This chapter summarizes methodology used by us, didactic tools, and obtained results for both educational and scientific analog simulations.
The technical details of a balloon stratospheric mission that is aimed at measuring the Schumann resonances are described. The gondola is designed specifically for the measuring of faint effects of ELF (Extremely Low Frequency electromagnetic waves) phenomena. The prototype met the design requirements. The ELF measuring system worked properly for entire mission; however, the level of signal amplification that was chosen taking into account ground-level measurements was too high. Movement of the gondola in the Earth magnetic field induced the signal in the antenna that saturated the measuring system. This effect will be taken into account in the planning of future missions. A large telemetry dataset was gathered during the experiment and is currently under processing. The payload consists also of biological material as well as electronic equipment that was tested under extreme conditions. Keywords:The Schumann resonances, ELF (Extremely Low Frequencies), balloon mission Streszczenie W artykule opisano szczegóły techniczne misji balonowej, mającej na celu pomiar rezonansów Schumanna. Gondola została zaprojektowana do pomiaru słabych efektów ELF (fale elektromagnetyczne o skrajnie niskiej częstotliwości). Prototyp spełnił założenia projektowe. Układ do pomiaru ELF działał poprawnie przez całą misję, jednak poziom wzmocnienia sygnału, który był dobrany zgodnie z pomiarami naziemnymi, okazał się za duży. Ruch gondoli w ziemskim polu magnetycznym indukował w antenie sygnał, który wprowadzał układ pomiarowy w stan nasycenia. Ten efekt zostanie wzięty pod uwagę w planowaniu przyszłych misji. Podczas eksperymentu zebrano duży zestaw danych telemetrycznych, który jest obecnie analizowany. Ładunek zwierał również materiał biologiczny oraz sprzęt elektroniczny, który był testowany w warunkach ekstremalnych.Słowa kluczowe: rezonanse Schumanna, ELF, misje balonowe 234
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.