We have investigated the structural, elastic, electronic, optical and thermal properties of CsBaF3 perovskite using the full-potential linearized augmented plane wave method within the generalized gradient approximation and the local density approximation. Moreover, the modied BeckeJohnson potential (TB-mBJ) was also applied to improve the electronic band structure calculations. The ground state properties such as lattice parameter, bulk modulus and its pressure derivative were calculated and the results are compared with the available theoretical data. The elastic properties such as elastic constants, anisotropy factor, shear modulus, Young's modulus and Poisson's ratio are obtained for the rst time. Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density. The contribution of the dierent bands was analyzed from the total and partial density of states curves. The dierent interband transitions have been determined from the imaginary part of the dielectric function. The thermal eect on the volume, bulk modulus, heat capacities CV and the Debye temperature was predicted using the quasi-harmonic Debye model, in which the lattice vibrations are taken into account.
The electronic structure, mechanical and thermodynamic properties of Fe2VX, (with X = Al and Ga), have been studied self consistently by employing state-of-the-art full-potential linearized approach of augmented plane wave plus local orbitals (FP-LAPW + lo) method. The exchange-correlation potential is treated with the local density and generalized gradient approximations (LDA and GGA). Our predicted ground state properties such as lattice constants, bulk modulus and elastic constants appear more accurate when we employed the GGA rather than the LDA, and these results are in very good agreement with the available experimental and theoretical data. Further, thermodynamic properties of Fe2VAl and Fe2VGa are predicted with pressure and temperature in the ranges of 0–40 GPa and 0–1500 K using the quasi-harmonic Debye model. We have obtained successfully the variations of the heat capacities, primitive cell volume and volume expansion coefficient.
Density functional theory (DFT) is performed to study the structural, electronic and optical properties of cubic fluoroperovskite AMF3( A = Cs ; M = Ca and Sr ) compounds. The calculations are based on the total-energy calculations within the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated by local density approximation (LDA) and generalized gradient approximation (GGA). The structural properties, including lattice constants, bulk modulus and their pressure derivatives are in very good agreement with the available experimental and theoretical data. The calculations of the electronic band structure, density of states and charge density reveal that compounds are both ionic insulators. The optical properties (namely: the real and the imaginary parts of the dielectric function ε(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 40.0 eV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.