Suppression of high M r tropomyosins (TMs) is a common feature of transformed cells. Previous work from this laboratory has demonstrated that the isoform 1 of TM, TM1, acts as an anti-oncogene in rastransformed murine ®broblasts. In this study, we have investigated whether TM1 is a ras-speci®c suppressor, or a general suppressor protein of the cellular transformation. V-src transformed ®broblasts, which express decreased TM1, were transduced with a full-length cDNA to overexpress TM1. Both the control and the transduced cells expressed v-src kinase at comparable levels. TM1 expressing (src-T1) cells grew at a lower rate in monolayer, exhibited well spread,¯at morphology than the control cells. Enhanced expression of TM1 resulted in improved micro®lamental architecture. More signi®cantly, src-T1 cells completely failed to grow under anchorage independent conditions. These data demonstrate that TM1 is as an anti-oncogene of functionally diverse oncogenes, and it is a class II tumor suppressor protein.
TRAIL, an apoptosis inducing cytokine currently in phase II clinical trial, was investigated for its capability to induce apoptosis in six different human tumor cell lines out of which three cell lines showed resistance to TRAIL induced apoptosis. To investigate whether Anacardic acid (A1) an active component of Anacardium occidentale can sensitize the resistant cell lines to TRAIL induced apoptosis, we treated the resistant cells with suboptimal concentration of A1 and showed that it is a potent enhancer of TRAIL induced apoptosis which up-regulates the expression of both DR4 and DR5 receptors, which has been observed in the cellular, protein and mRNA levels. The death receptors upregulation consequent to A1 treatment was corroborated by the activation of p53 as well as phosphorylation of p38 and JNK MAP kinases and concomitant inactivation of NFκβ and ERK signaling cascades. Also, A1 modulated the expression of key apoptotic players like Bax, Bcl-2 and CAD along with the abatement of tumor angiogenesis in vivo in EAT mouse model. Thus, post A1 treatment the TRAIL resistant cells turned into TRAIL sensitive cells. Hence our results demonstrate that A1 can synergize TRAIL induced apoptosis through the upregulation of death receptors and downregulation of anti-apoptotic proteins in cancer context.
Synthesis of 3-(4-((3-Phenyl-4,5-dihydroisoxazol-5-yl)methyl)piperazin-1-yl) benzoisothiazole derivatives (5a-i), which constitute a new class of isoxazolines, has been accomplished in regio-selective manner. These derivatives have been prepared by employing the reaction between substituted aldoximes (4a-i) and 3-(4-Allylpiperazin-1-yl) benzoisothiazole in presence of chloramine-T which afforded in good yields. These compounds were screened for cytotoxic activity on tumor cells. Four among the nine synthesized compounds were found to exhibit potent cytotoxic and antineoplastic activities in comparison to tumor necrosis factor-related apoptosis inducing ligand (TRAIL) protein in mammalian cancer cells. The rest of the derivatives showed moderate activity.
Context: Abnormal angiogenesis and evasion of apoptosis are hallmarks of cancer. Accordingly, anti-angiogenic and pro-apoptotic therapies are effective strategies for cancer treatment. Medicinal plants, namely, Eugenia jambolana Lam. (Myrtaceae), Musa paradisiaca L. (Musaceae), and Coccinia indica Wight & Arn. (Cucurbitaceae), have not been greatly investigated for their anticancer potential.Objective: We investigated the anti-angiogenic and pro-apoptotic efficacy of ethyl acetate (EA) and n-butanol (NB) extracts of E. jambolana (seeds), EA extracts of M. paradisiaca (roots) and C. indica (leaves) with respect to mammary neoplasia.Materials and methods: Effect of extracts (2–200 μg/mL) on cytotoxicity and MCF-7, MDA-MB-231 and endothelial cell (EC) proliferation and in vitro angiogenesis were evaluated by MTT, 3[H]thymidine uptake and EC tube formation assays, respectively. In vivo tumour proliferation, VEGF secretion and angiogenesis were assessed using the Ehrlich ascites tumour (EAT) model followed by rat corneal micro-pocket and chicken chorioallantoic membrane (CAM) assays. Apoptosis induction was assessed by morphological and cell cycle analysis.Results: EA extracts of E. jambolana and M. paradisiaca exhibited the highest cytotoxicity (IC50 25 and 60 μg/mL), inhibited cell proliferation (up to 81%), and tube formation (83% and 76%). In vivo treatment reduced body weight (50%); cell number (16.5- and 14.7-fold), secreted VEGF (∼90%), neoangiogenesis in rat cornea (2.5- and 1.5-fold) and CAM (3- and 1.6-fold) besides EAT cells accumulation in sub-G1 phase (20% and 18.38%), respectively.Discussion and conclusion: Considering the potent anti-angiogenic and pro-apoptotic properties, lead molecules from EA extracts of E. jambolana and M. paradisiaca can be developed into anticancer drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.