Analyses and modeling of gravity data in the Dead Sea pull-apart basin reveal the geometry of the basin and constrain models for its evolution. The basin is located within a valley which defines the Dead Sea transform plate boundary between Africa and Arabia. Three hundred kilometers of continuous marine gravity data, collected in a lake occupying the northern part of the basin, were integrated with land gravity data from Israel and Jordan to provide coverage to 30 km either side of the basin. Free-air and variable-density Bouguer anomaly maps, a horizontal first derivative map of the Bouguer anomaly, and gravity models of profiles across and along the basin were used with existing geological and geophysical information to infer the structure of the basin. The basin is a long (132 km), narrow (7-10 km), and deep (-<10 km) full graben which is bounded by subvertical faults along its long sides. The Bouguer anomaly along the axis of the basin decreases gradually from both the northern and southern ends, suggesting that the basin sags toward the center and is not bounded by faults at its narrow ends. The surface expression of the basin is wider at its center (<16 km) and covers the entire width of the transform valley due to the presence of shallower blocks that dip toward the basin. These blocks are interpreted to represent the widening of the basin by a passive collapse of the valley floor as the full graben deepened. The collapse was probably facilitated by movement along the normal faults that bound the transform valley. We present a model in which the geometry of the Dead Sea basin (i.e., full graben with relative along-axis symmetry) may be controlled by stretching of the entire (brittle and ductile) crust along its long axis. There is no evidence for the participation of the upper mantle in the deformation of the basin, and the Moho is not significantly elevated. The basin is probably close to being isostatically uncompensated, and thermal effects related to stretching are expected to be minimal. The amount of crustal stretching calculated from this model is 21 km and the stretching factor is 1.19. If the rate of crustal stretching is similar to the rate of relative plate motion (6 mm/yr), the basin should be --•3.5 m.y. old, in accord with geological evidence. ment discontinuities across en echelon faults in a brittleelastic medium [Rodgers, 1980; $egall and Pollard, 1980; Bilham and King, 1989]. The evolution of deep basins (deeper than 2-3 km) is expected to be more complicated as they result from either larger displacements along the fault system or from rotation of the axis of extension relative to the fault system. Furthermore, the deformation of deep 1U.S. Geological Survey, Woods Hole, Massachusetts. 2Department Paper number 93JB02025. 0148-0227/93/93JB-02025505.00 strike-slip basins can either be thin-skinned (brittle upper crust above a detachment surface [Royden, 1985]) or thickskinned involving the ductile lower crust [Christie-Blick and Biddle, 1985]. The Dead Sea basin is one of the better examp...
A 3D interpretation of the newly compiled Bouguer anomaly in the area of the ''Dead Sea Rift'' is presented. A high-resolution 3D model constrained with the seismic results reveals the crustal thickness and density distribution beneath the Arava/Araba Valley (AV), the region between the Dead Sea and the Gulf of Aqaba/Elat. The Bouguer anomalies along the axial portion of the AV, as deduced from the modelling results, are mainly caused by deep-seated sedimentary basins (D > 10 km). An inferred zone of intrusion coincides with the maximum gravity anomaly on the eastern flank of the AV. The intrusion is displaced at different sectors along the NNW-SSE direction. The zone of maximum crustal thinning (depth 30 km) is attained in the western sector at the Mediterranean. The southeastern plateau, on the other hand, shows by far the largest crustal thickness of the region (38-42 km). Linked to the left lateral movement of approx. 105 km at the boundary between the African and Arabian plate, and constrained with recent seismic data, a small asymmetric topography of the Moho beneath the Dead Sea Transform (DST) was modelled. The thickness and density of the crust suggest that the AV is underlain by continental crust. The deep basins, the relatively large intrusion and the asymmetric topography of the Moho lead to the conclusion that a small-scale asthenospheric upwelling could be responsible for the thinning of the crust and subsequent creation of the Dead Sea basin during the left lateral movement. A clear segmentation along the strike of the DST was obtained by curvature analysis: the northern part in the neighbourhood of the Dead Sea is characterised by high curvature of the residual gravity field. Flexural rigidity calculations result in very low values of effective elastic lithospheric thickness (t e < 5 km). This points to decoupling of crust in the Dead Sea area. In the central, AV the curvature is less pronounced and t e increases to approximately 10 km. Curvature is high again in the southernmost part near the Aqaba region. Solutions of Euler deconvolution were visualised together with modelled density bodies and fit very well into the density model structures.
S U M M A R YTo address one of the central questions of plate tectonics-How do large transform systems work and what are their typical features?-seismic investigations across the Dead Sea Transform (DST), the boundary between the African and Arabian plates in the Middle East, were conducted for the first time. A major component of these investigations was a combined reflection/refraction survey across the territories of Palestine, Israel and Jordan. The main results of this study are: (1) The seismic basement is offset by 3-5 km under the DST, (2) The DST cuts through the entire crust, broadening in the lower crust, (3) Strong lower crustal reflectors are imaged only on one side of the DST, (4) The seismic velocity sections show a steady increase in the depth of the crust-mantle transition (Moho) from ∼26 km at the Mediterranean to ∼39 km under the Jordan highlands, with only a small but visible, asymmetric topography of the Moho under the DST. These observations can be linked to the left-lateral movement of 105 km of the two plates in the last 17 Myr, accompanied by strong deformation within a narrow zone cutting through the entire crust. Comparing the DST and the San Andreas Fault (SAF) system, a strong asymmetry in subhorizontal lower crustal reflectors and a deep reaching deformation zone both occur around the DST and the SAF. The fact that such lower crustal reflectors and deep deformation zones are observed in such different transform systems suggests that these structures are possibly fundamental features of large transform plate boundaries.
[1] Fault zones are the locations where motion of tectonic plates, often associated with earthquakes, is accommodated. Despite a rapid increase in the understanding of faults in the last decades, our knowledge of their geometry, petrophysical properties, and controlling processes remains incomplete. The central questions addressed here in our study of the Dead Sea Transform (DST) in the Middle East are as follows: (1) What are the structure and kinematics of a large fault zone? (2) What controls its structure and kinematics? (3) How does the DST compare to other plate boundary fault zones? The DST has accommodated a total of 105 km of leftlateral transform motion between the African and Arabian plates since early Miocene ($20 Ma). The DST segment between the Dead Sea and the Red Sea, called the Arava/ Araba Fault (AF), is studied here using a multidisciplinary and multiscale approach from the mm to the plate tectonic scale. We observe that under the DST a narrow, subvertical zone cuts through crust and lithosphere. First, from west to east the crustal thickness increases smoothly from 26 to 39 km, and a subhorizontal lower crustal reflector is detected east of the AF. Second, several faults exist in the upper crust in a 40 km wide zone centered on the AF, but none have kilometer-size zones of decreased seismic velocities or zones of high electrical conductivities in the upper crust expected for large damage zones. Third, the AF is the main branch of the DST system, even though it has accommodated only a part (up to 60 km) of the overall 105 km of sinistral plate motion. Fourth, the AF acts as a barrier to fluids to a depth of 4 km, and the lithology changes abruptly across it. Fifth, in the top few hundred meters of the AF a locally transpressional regime is observed in a 100-300 m wide zone of deformed and displaced material, bordered by subparallel faults forming a positive flower structure. Other segments of the AF have a transtensional character with small pull-aparts along them. The damage zones of the individual faults are only 5 -20 m wide at this depth range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.