[1] We forward modeled the Bouguer anomaly in a region encompassing the Pacific Ocean (85°W) and the Andean margin (60°W) between northern Peru (5°S) and Patagonia (45°S). The three-dimensional density model that reproduces the gravity field is a continental-scale representation of density structure to 410 km depth that characterizes the mantle and crust of the oceanic Nazca plate, subducted slab and continental margin with a minimum number of bodies. We predefined the density of each body after studying the dependency of density on composition of crustal and mantle materials and pressuretemperature conditions appropriate for the Andean setting. A database of independent geophysical information constrains the geometry of the top of the subducted slab, locally the Moho of the oceanic and continental crusts and, indirectly, the lithosphereasthenosphere boundary underneath the continental plate. Other boundaries, notably the intracrustal density discontinuity separating upper from lower crust below the continent, were not constrained and their geometry is the result of fitting the observed and calculated Bouguer anomaly during forward modeling. This contribution presents the model to the Andean geoscientific community and contains some tools, like a sensitivity analysis, that helps potential users of the model to interpret its results. We describe and discuss some of these results in order to illustrate the application of the model to the study of a wide range of phenomena (e.g., modification of oceanic plate structure by hot spots, shape of the subducted slab, thermal structure of the continental lithosphere, compensation mechanism and formation of orogenic relieve, causes of Andean segmentation).Citation: Tassara, A., H.-J. Götze, S. Schmidt, and R. Hackney (2006), Three-dimensional density model of the Nazca plate and the Andean continental margin,
Geophysics uses gravity to learn about the density variations of the Earth’s interior, whereas classical geodesy uses gravity to define the geoid. This difference in purpose has led to some confusion among geophysicists, and this tutorial attempts to clarify two points of the confusion. First, it is well known now that gravity anomalies after the “free‐air” correction are still located at their original positions. However, the “free‐air” reduction was thought historically to relocate gravity from its observation position to the geoid (mean sea level). Such an understanding is a geodetic fiction, invalid and unacceptable in geophysics. Second, in gravity corrections and gravity anomalies, the elevation has been used routinely. The main reason is that, before the emergence and widespread use of the Global Positioning System (GPS), height above the geoid was the only height measurement we could make accurately (i.e., by leveling). The GPS delivers a measurement of height above the ellipsoid. In principle, in the geophysical use of gravity, the ellipsoid height rather than the elevation should be used throughout because a combination of the latitude correction estimated by the International Gravity Formula and the height correction is designed to remove the gravity effects due to an ellipsoid of revolution. In practice, for minerals and petroleum exploration, use of the elevation rather than the ellipsoid height hardly introduces significant errors across the region of investigation because the geoid is very smooth. Furthermore, the gravity effects due to an ellipsoid actually can be calculated by a closed‐form expression. However, its approximation, by the International Gravity Formula and the height correction including the second‐order terms, is typically accurate enough worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.