[1] We forward modeled the Bouguer anomaly in a region encompassing the Pacific Ocean (85°W) and the Andean margin (60°W) between northern Peru (5°S) and Patagonia (45°S). The three-dimensional density model that reproduces the gravity field is a continental-scale representation of density structure to 410 km depth that characterizes the mantle and crust of the oceanic Nazca plate, subducted slab and continental margin with a minimum number of bodies. We predefined the density of each body after studying the dependency of density on composition of crustal and mantle materials and pressuretemperature conditions appropriate for the Andean setting. A database of independent geophysical information constrains the geometry of the top of the subducted slab, locally the Moho of the oceanic and continental crusts and, indirectly, the lithosphereasthenosphere boundary underneath the continental plate. Other boundaries, notably the intracrustal density discontinuity separating upper from lower crust below the continent, were not constrained and their geometry is the result of fitting the observed and calculated Bouguer anomaly during forward modeling. This contribution presents the model to the Andean geoscientific community and contains some tools, like a sensitivity analysis, that helps potential users of the model to interpret its results. We describe and discuss some of these results in order to illustrate the application of the model to the study of a wide range of phenomena (e.g., modification of oceanic plate structure by hot spots, shape of the subducted slab, thermal structure of the continental lithosphere, compensation mechanism and formation of orogenic relieve, causes of Andean segmentation).Citation: Tassara, A., H.-J. Götze, S. Schmidt, and R. Hackney (2006), Three-dimensional density model of the Nazca plate and the Andean continental margin,
SUMMARY
We present an upgraded version of a previously published 3‐D density model of the Andean subduction zone between 18°S and 45°S. This model consists of 3‐D bodies of constant density, which geometry is constrained by independent seismic data and is triangulated from vertical cross‐sections. These bodies define the first‐order morphology and internal structure of the subducted Nazca slab and South American Plate. The new version of the density model results after forward modelling the Bouguer anomaly as computed from the most recent version of the Earth Gravitational Model (EGM2008). The 3‐D density model incorporates new seismic information to better constrain the geometry of the subducted slab and continental Moho (CMH) and has a trench‐parallel resolution doubling the resolution of the previous model. As an example of the potential utility of our model, we compare the geometry of the subducted slab and CMH against the corresponding global models Slab1.0 and Crust2.0, respectively. This exercise demonstrates that, although global models provide a good first‐order representation of the slab and upper‐plate crustal geometries, they show large discrepancies (up to ±40 km) with our upgraded model for some well‐constrained areas. The geometries of the slab, lithosphere–asthenosphere boundary below the continent, CMH and intracrustal density discontinuity that we present here as Supporting Information can be used to study Andean geodynamic processes from a wide range of quantitative approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.