Rapid worldwide spread and polyphagous nature of the spotted wing Drosophila Drosophila suzukii Matsumura (Diptera: Drosophilidae) calls for efficient and selective control strategies to prevent severe economic losses in various fruit crops. The use of insecticides is one option for management of this invasive pest insect. Efficacy of insecticides is usually assessed first in laboratory bioassays, which are compounded by the cryptic nature of D. suzukii larvae and the fact that fruits used in bioassays often start to rot and dissolve before larvae have reached the adult stage. Here, we report on laboratory bioassays using three different types of substrates allowing a thorough screening of insecticides for their potential effects against D. suzukii eggs, larvae and adults. Suitability of our bioassays was validated in an assessment of the efficacy of four bioinsecticides and one synthetic insecticide against various developmental stages of D. suzukii. Water-apple juice agar used as a bioassay substrate allowed egg counting and observation of larval development due to its transparency, while apple-nutrition medium allowed complete metamorphosis. Use of grape berries in bioassays made it possible to assess effects of an insecticide present on a fruit’s surface on oviposition and larval hatch from eggs. Insecticides tested in these three different bioassays with acetamiprid, spinosad or natural pyrethrins as active ingredients achieved a significant D. suzukii control if they were applied before egg deposition. Number of adult flies was significantly reduced if the bioassay medium was treated with an azadirachtin A containing insecticide both before or after egg deposition.
The grape leafhopper Empoasca vitis (Homoptera: Cicadellidae) is regarded as a major insect pest in many European grapevine growing areas, with an increasing importance realized in recent years maybe as a result of climatic change. Both larvae and adults feed on the phloem vessels of the leaves, causing characteristic symptoms also referred to as hopperburn. Phenology of adult leafhoppers was monitored in one vineyard in three successive years and indicated that immigration of a few hibernated E. vitis individuals into vineyards might take place already quite early in the year depending on winter temperatures and starts to progress in substantial numbers right at grapevine bud burst. In addition, these monitoring studies have shown that there are several other leafhopper species occurring on grapevine plants besides E. vitis, such as the rose leafhopper Edwardsiana rosae (Homoptera: Cicadellidae). Here, we report on the development of larval instars of both leafhopper species, E. vitis and E. rosae on grapevine leaves under different temperature regimes in the laboratory. Shortest larval developmental time was observed at night temperatures of 13–15°C and day temperatures of 23–25°C, which was in agreement with predicted optimal temperatures for both species. At the temperature regime of 20°C night and 30°C day temperature, either no egg hatch was observed or early development of first‐instar larvae was not successful for both species. These results suggest that warm (18°C) nights and moderately warm (28°C) days are representing the upper thermal threshold for development of both E. vitis and E. rosae embryonic stages on grapevine leaves, questioning current assumptions of an increasing importance of E. vitis as a grapevine pest under future climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.