This paper explores the possibility of removing hydrocarbons (HCs) and trace elements from synthetic and industrial effluents using treated bark as biosorbent. Coniferous bark was treated either chemically (Tc) or biologically (Tb) to eliminate soluble organic compounds of bark. The removal efficiency (RE) of the HCs from a synthetic oilwater mixture containing spent diesel motor oil exceeds 95% using 2 g/L of treated bark mixed with a synthetic oil-water mixture containing 2 g/L of spent oil. Under these conditions, the retention capacity (RC) was ~1 g HC/g dry substrate. The sorption reaction seems to be quasi-instantaneous, and the retention capacity of spent oil on treated bark increases as the temperature augments. This implies that the retention mechanism is related to the capillary action.
Raw, biologically treated bark and bark impregnated with transition metal ions were used to retain the lipids from synthetic emulsions. Several experimental parameters affecting the lipid removal efficiency (RE) were studied (initial concentration of lipids, temperature, time, pH, carboxylic acid chain length, etc.). Saturated bark was characterized using Fourier transform infrared (FTIR) spectroscopy and light microscopy, and the treated bark wetting index was determined. Results show that lipid removal can exceed 95% of the initial concentration at a pH lower than 7. The uptake of lipids by these sorbents varied from 0.2 to 2.5 g/g of dry bark. Trials for regenerating the sorbent saturated by lipids allowed the recovery of approximately 95% of lipids. The calorific value of the saturated bark was approximately 79% that of domestic fuel and can be considered as an energy source, thus avoiding its waste disposal. These results may upgrade the treatment of wastewater generated by several industrial sectors, such as the food industry, surface treatment, and so on.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.