We present a survey of quasiperiodic (QP) ELF/VLF emissions detected onboard the DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) satellite (altitude of about 700 km, nearly Sun-synchronous orbit at 10:30/22:30 LT). Six years of data have been visually inspected for the presence of QP emissions with modulation periods higher than 10 s and with frequency bandwidths higher than 200 Hz. It is found that these QP events occur in about 5% of daytime half orbits, while they are basically absent during the night. The events occur predominantly during quiet geomagnetic conditions following the periods of enhanced geomagnetic activity. Their occurrence and properties are systematically analyzed. QP emissions occur most often at frequencies from about 750 Hz to 2 kHz, but they may be observed at frequencies as low as 500 Hz and as high as 8 kHz. Modulation periods of QP events may range from about 10 to 100 s, with typical values of 20 s. Frequency drifts of the identified events are generally positive, but they are lower for events with larger modulation periods. The events are usually limited to higher L values (L > 2). The upper L shell boundary of their occurrence could not be identified using the DEMETER data, but they are found to extend up to at least L~6. The occurrence rate of the events is significantly lower at the longitudes of the South Atlantic anomaly (by a factor of more than 2).
[1] Quasi-periodic (QP) emissions are electromagnetic emissions at frequencies of about 0.5-4 kHz that are characterized by a periodic time modulation of the wave intensity. Typical periods of this modulation are on the order of minutes. We present a case study of a large-scale long-lasting QP event observed simultaneously on board the DEMETER (Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions) and the Cluster spacecraft. The measurements by the Wide-Band Data instrument on board the Cluster spacecraft enabled us to obtain high-resolution frequency-time spectrograms of the event close to the equatorial region over a large range of radial distances, while the measurements by the STAFF-SA instrument allowed us to perform a detailed wave analysis. Conjugate observations by the DEMETER spacecraft have been used to estimate the spatial and temporal extent of the emissions. The analyzed QP event lasted as long as 5 h and it spanned over the L-shells from about 1.5 to 5.5. Simultaneous observations of the same event by DEMETER and Cluster show that the same QP modulation of the wave intensity is observed at the same time at very different locations in the inner magnetosphere. ULF magnetic field fluctuations with a period roughly comparable to, but somewhat larger than the period of the QP modulation were detected by the fluxgate magnetometers instrument on board the Cluster spacecraft near the equatorial region, suggesting these are likely to be related to the QP generation. Results of a detailed wave analysis show that the QP emissions detected by Cluster propagate unducted, with oblique wave normal angles at higher geomagnetic latitudes.
[1] Magnetospheric line radiation (MLR) events are electromagnetic waves in the frequency range between about 1 and 8 kHz that, when presented as a frequency-time spectrogram, take the form of nearly parallel and clearly defined lines, which sometimes drift slightly in frequency. They have been observed both by satellites and ground-based instruments, but their origin is still unclear. We present a survey of these MLR waves observed by the DEMETER spacecraft (at an altitude of about 700 km). Three years of VLF Survey mode data were manually searched for MLR events, creating the largest event satellite database of about 650 events, which was then used to investigate the wave properties and geographical occurrence. Finally, the most favorable geomagnetic conditions (Kp and Dst indices) for the occurrence of MLR events have been found. It is shown that MLR events occur mostly at L > 2 (upper limit is given by a limitation of the spacecraft), they occur primarily inside the plasmasphere, and there is a lower number of events occurring over the Atlantic Ocean than elsewhere on the globe. The MLR events occur more often during the day and usually during, or after, periods of higher magnetic activity. Their frequencies usually lay between about 2 and 6 kHz, with the total frequency bandwidth of an observation being below 2 kHz in the majority of cases. Moreover, it is shown that the longitudinal dimensions of the MLR events can be as large as 100°and they can last for up to a few hours. Finally, we discuss a possibility that MLR events may be triggered by power line harmonic radiation (PLHR) and we report an event supporting this hypothesis.
Quasiperiodic (QP) emissions are electromagnetic waves in the frequency range of about 0.5–4 kHz observed in the inner magnetosphere that exhibit a periodic time modulation of the wave intensity, with modulation periods from a few seconds up to 10 min. We present results of a detailed wave analysis of nearly 200 events measured by the low‐altitude Detection of Electro‐Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) spacecraft. Upper frequency range of studied emissions was limited to 1 kHz due to the sampling rate of the analyzed data. It is found that QP emissions propagate nearly field aligned at larger geomagnetic latitudes; they become more oblique at midlatitudes and eventually perpendicular to the ambient magnetic field at the geomagnetic equator and thus perpendicular to the Earth's surface, allowing their downward propagation through the ionosphere. The observed propagation pattern is consistent with the source of emissions located in the equatorial region at larger radial distances.
[1] We present results of case studies of quasi-periodic (QP) ELF/VLF hiss emissions detected onboard the DEMETER satellite. Three events with simultaneous periodic modulation in VLF wave intensity and energetic electron precipitation are found. In each event we observe exact coincidence of one or two busts of VLF wave intensity with energetic electron precipitation peaks. To our knowledge, such observations made onboard satellites have not been reported earlier. All events are observed at fairly quiet geomagnetic conditions (Kp < 3). The dynamic spectrum of the VLF waves in these QP events was characterized by a regular frequency increase in each burst, and the repetition period was less than or about 20 s. These features allow us to suggest that the observed events belong to the QP2-class, i.e., events which are not associated with geomagnetic pulsations. We also analyze energetic electron data from NOAA-17 spacecraft which has helio-synchronous circular orbit similar to DEMETER spacecraft and measured in the same region of the magnetosphere within 30 min for the analyzed events. NOAA-17 data confirm that the QP emissions were detected by DEMETER in the region of isotropization of energetic electrons, which is typically associated with the development of the cyclotron instability. Modulation of electron flux with a period close to the QP emission period is observed in two events. Based on the observed correlation between bursts of wave intensity and energetic particle flux, we estimate the location and spatial extent of the source region for QP emissions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.