We have investigated the transmission of the 5 keV proton beam through a graphene sheet containing monovacancy, adatom, and Stone–Wales defects. The proton–graphene interaction potential was constructed using the Doyle–Turner's proton–carbon interaction potential. The closed form of the scattering law was obtained using the momentum approximation. Angular distributions of the transmitted protons were analyzed using the morphological method based on the inspection of the rainbow patterns in the impact parameter and scattering angle planes generated by the rainbow scattering. We have demonstrated that rainbows in the impact parameter plane are attracted and repelled by the nearest saddles and maxima of the reduced proton–graphene interaction potential. This explains why the rainbow pattern is so sensitive to the redistribution of the potential extrema caused by defects. Each defect type produces its distinctive rainbow pattern that dominantly determines the shape of the angular distribution. The ridge maxima of the angular distributions were investigated and related to the spectrum of the Jacobian matrix of the map generated by the scattering law. In the end, it has been shown how observed rainbow patterns could be used to determine the unknown defect densities of the complicated sample containing a combination of the different defect types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.