Double-gate (DG) SOI-MOSFET device is regarded as the next generation of VLSI circuits. In this paper, we show the impact of miniaturization on the demand and challenges of the undoped-body symmetric DG-SOI-MOSFET planar design for low power and high performance. By exploiting the graphical approach used previously, which consists of numerical simulations valid for all bias conditions, from subthreshold to strong inversion and from linear to saturation operation, we visualized the evolution of the transfer, output and electrical characteristics and output conductance by varying each of the parameters independently: oxide thickness (tox), channel length (L) and channel width (W). The results obtained allowed to verify how each dimension affects different electrical properties of the DG-SOI-MOSFET. It was found that L, W and tox significantly influence these properties, as well as this transistor includes the channel length-modulation (CLM) and drain induced barrier lowering (DIBL) effects. This study showed the ability to predict the electrical behavior of the DG-SOI-MOSFET by its geometrical dimensions, and the possibility of choosing the optimal dimensions to ensure high performance of this transistor in both analog and digital circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.