Cytotoxic T lymphocytes (CTLs) directed to nonviral tumor-associated antigens do not survive long term and have limited antitumor activity in vivo, in part because such tumor cells typically lack the appropriate costimulatory molecules. We therefore engineered Epstein-Barr virus (EBV)-specific CTLs to express a chimeric antigen receptor directed to the diasialoganglioside GD2, a nonviral tumor-associated antigen expressed by human neuroblastoma cells. We reasoned that these genetically engineered lymphocytes would receive optimal costimulation after engagement of their native receptors, enhancing survival and antitumor activity mediated through their chimeric receptors. Here we show in individuals with neuroblastoma that EBV-specific CTLs expressing a chimeric GD2-specific receptor indeed survive longer than T cells activated by the CD3-specific antibody OKT3 and expressing the same chimeric receptor but lacking virus specificity. Infusion of these genetically modified cells seemed safe and was associated with tumor regression or necrosis in half of the subjects tested. Hence, virus-specific CTLs can be modified to function as tumordirected effector cells. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author ManuscriptThe promise of tumor antigen-specific T lymphocytes for the treatment of melanoma and EBVassociated malignancies 1-7 has led to efforts to retarget effector T cells and thereby extend the range of tumors that they can treat. A common strategy has been to introduce a synthetic receptor with an antigen-binding domain from an antibody coupled to a signal-transducing endodomain derived from the native T cell receptor into activated T cells (ATCs) 8 . These chimeric antigen receptors (CARs) thus have the specificity of an antibody coupled to the cytotoxic effector mechanisms of the T cell. To date, however, this strategy has had only limited success, owing in part to the lack of essential costimulatory signals to the T cell during engagement of its CAR and perhaps also to the introduction of the CAR into regulatory T (T reg ) cells, as well as into conventional T effector cells 9 . Consequently, even when the infusion of large numbers of CAR-bearing T cells is supplemented with exogenous growth factors, such as interleukin-2 (IL-2), survival in vivo is poor and antitumor activity minimal 10,11 . By contrast, small numbers of CTLs with native receptor specificity directed to persistent human viruses such as EBV can survive long term after infusion and eradicate even bulky EBV-associated malignancies, such as Hodgkin's disease and nasopharyngeal cancer 2,12-14 . A contributing factor to the superior survival and function of EBV-specific CTLs is that engagement of their native receptors by EBV-infected B cells produces extensive co-stimulation during their preparation ex vivo and by encounters with (latent) viral antigens on antigen-presenting cells in vivo 15 .This knowledge has given rise to the concept of engineering antigen-specific CTLs to provide them with a second specificity for ...
NK cells have therapeutic potential for a wide variety of human malignancies. However, because NK cells expand poorly in vitro, have limited life spans in vivo, and represent a small fraction of peripheral white blood cells, obtaining sufficient cell numbers is the major obstacle for NK-cell immunotherapy. Genetically-engineered artificial antigen-presenting cells (aAPCs) expressing membrane-bound IL-15 (mbIL15) have been used to propagate clinical-grade NK cells for human trials of adoptive immunotherapy, but ex vivo proliferation has been limited by telomere shortening. We developed K562-based aAPCs with membrane-bound IL-21 (mbIL21) and assessed their ability to support human NK-cell proliferation. In contrast to mbIL15, mbIL21-expressing aAPCs promoted log-phase NK cell expansion without evidence of senescence for up to 6 weeks of culture. By day 21, parallel expansion of NK cells from 22 donors demonstrated a mean 47,967-fold expansion (median 31,747) when co-cultured with aAPCs expressing mbIL21 compared to 825-fold expansion (median 325) with mbIL15. Despite the significant increase in proliferation, mbIL21-expanded NK cells also showed a significant increase in telomere length compared to freshly obtained NK cells, suggesting a possible mechanism for their sustained proliferation. NK cells expanded with mbIL21 were similar in phenotype and cytotoxicity to those expanded with mbIL15, with retained donor KIR repertoires and high expression of NCRs, CD16, and NKG2D, but had superior cytokine secretion. The mbIL21-expanded NK cells showed increased transcription of the activating receptor CD160, but otherwise had remarkably similar mRNA expression profiles of the 96 genes assessed. mbIL21-expanded NK cells had significant cytotoxicity against all tumor cell lines tested, retained responsiveness to inhibitory KIR ligands, and demonstrated enhanced killing via antibody-dependent cell cytotoxicity. Thus, aAPCs expressing mbIL21 promote improved proliferation of human NK cells with longer telomeres and less senescence, supporting their clinical use in propagating NK cells for adoptive immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.