NK cells have therapeutic potential for a wide variety of human malignancies. However, because NK cells expand poorly in vitro, have limited life spans in vivo, and represent a small fraction of peripheral white blood cells, obtaining sufficient cell numbers is the major obstacle for NK-cell immunotherapy. Genetically-engineered artificial antigen-presenting cells (aAPCs) expressing membrane-bound IL-15 (mbIL15) have been used to propagate clinical-grade NK cells for human trials of adoptive immunotherapy, but ex vivo proliferation has been limited by telomere shortening. We developed K562-based aAPCs with membrane-bound IL-21 (mbIL21) and assessed their ability to support human NK-cell proliferation. In contrast to mbIL15, mbIL21-expressing aAPCs promoted log-phase NK cell expansion without evidence of senescence for up to 6 weeks of culture. By day 21, parallel expansion of NK cells from 22 donors demonstrated a mean 47,967-fold expansion (median 31,747) when co-cultured with aAPCs expressing mbIL21 compared to 825-fold expansion (median 325) with mbIL15. Despite the significant increase in proliferation, mbIL21-expanded NK cells also showed a significant increase in telomere length compared to freshly obtained NK cells, suggesting a possible mechanism for their sustained proliferation. NK cells expanded with mbIL21 were similar in phenotype and cytotoxicity to those expanded with mbIL15, with retained donor KIR repertoires and high expression of NCRs, CD16, and NKG2D, but had superior cytokine secretion. The mbIL21-expanded NK cells showed increased transcription of the activating receptor CD160, but otherwise had remarkably similar mRNA expression profiles of the 96 genes assessed. mbIL21-expanded NK cells had significant cytotoxicity against all tumor cell lines tested, retained responsiveness to inhibitory KIR ligands, and demonstrated enhanced killing via antibody-dependent cell cytotoxicity. Thus, aAPCs expressing mbIL21 promote improved proliferation of human NK cells with longer telomeres and less senescence, supporting their clinical use in propagating NK cells for adoptive immunotherapy.
Relapse has emerged as the most important cause of treatment failure after allogeneic hematopoietic stem cell transplantation (HSCT). To test the hypothesis that natural killer (NK) cells can decrease the risk of leukemia relapse, we initiated a phase 1 dose-escalation study of membrane-bound interleukin 21 (mbIL21) expanded donor NK cells infused before and after haploidentical HSCT for high-risk myeloid malignancies. The goals were to determine the safety, feasibility, and maximum tolerated dose. Patients received a melphalan-based reduced-intensity conditioning regimen and posttransplant cyclophosphamide-based graft-versus-host disease (GVHD) prophylaxis. NK cells were infused on days -2, +7, and +28 posttransplant. All NK expansions achieved the required cell number, and 11 of 13 patients enrolled received all 3 planned NK-cell doses (1 × 10/kg to 1 × 10/kg per dose). No infusional reactions or dose-limiting toxicities occurred. All patients engrafted with donor cells. Seven patients (54%) developed grade 1-2 acute GVHD (aGVHD), none developed grade 3-4 aGVHD or chronic GVHD, and a low incidence of viral complications was observed. One patient died of nonrelapse mortality; 1 patient relapsed. All others were alive and in remission at last follow-up (median, 14.7 months). NK-cell reconstitution was quantitatively, phenotypically, and functionally superior compared with a similar group of patients not receiving NK cells. In conclusion, this trial demonstrated production feasibility and safety of infusing high doses of ex vivo-expanded NK cells after haploidentical HSCT without adverse effects, increased GVHD, or higher mortality, and was associated with significantly improved NK-cell number and function, lower viral infections, and low relapse rate posttransplant.
Summary In human vitiligo, cutaneous depigmentation involves cytotoxic activity of autoreactive T cells. It was hypothesized that depigmentation can progress in the absence of regulatory T cells (Treg). The percentage of Treg among skin infiltrating T cells was evaluated by immunoenzymatic double staining for CD3 and FoxP3, revealing drastically reduced numbers of Treg in non-lesional, perilesional and lesional vitiligo skin. Assessment of the circulating Treg pool by FACS analysis of CD4, CD25, CD127 and FoxP3 expression, and mixed lymphocyte reactions in presence and absence of sorted Treg revealed no systemic drop in the abundance or activity of Treg in vitiligo patients. Expression of skin homing receptors CCR4, CCR5, CCR8 and CLA was comparable among circulating vitiligo and control Treg. Treg from either source were equally capable of migrating towards CCR4 ligand and skin homing chemokine CCL22, yet significantly reduced expression of CCL22 in vitiligo skin observed by immunohistochemistry may explain failure of circulating, functional Treg to home to the skin in vitiligo. The paucity of Treg in vitiligo skin is likely crucial for perpetual anti-melanocyte reactivity in progressive disease.
Natural killer (NK) cells play an important role in immune surveillance against a variety of infectious microorganisms and tumors. Limited availability of NK cells and ability to expand in vitro has restricted development of NK cell immunotherapy. Here we describe a method to efficiently expand vast quantities of functional NK cells ex vivo using K562 cells expressing membrane-bound IL21, as an artificial antigen-presenting cell (aAPC). NK cell adoptive therapies to date have utilized a cell product obtained by steady-state leukapheresis of the donor followed by depletion of T cells or positive selection of NK cells. The product is usually activated in IL-2 overnight and then administered the following day. Because of the low frequency of NK cells in peripheral blood, relatively small numbers of NK cells have been delivered in clinical trials. The inability to propagate NK cells in vitro has been the limiting factor for generating sufficient cell numbers for optimal clinical outcome. Some expansion of NK cells (5-10 fold over 1-2 weeks) has be achieved through high-dose IL-2 alone. Activation of autologous T cells can mediate NK cell expansion, presumably also through release of local cytokine. Support with mesenchymal stroma or artificial antigen presenting cells (aAPCs) can support the expansion of NK cells from both peripheral blood and cord blood. Combined NKp46 and CD2 activation by antibody-coated beads is currently marketed for NK cell expansion (Miltenyi Biotec, Auburn CA), resulting in approximately 100-fold expansion in 21 days. Clinical trials using aAPC-expanded or -activated NK cells are underway, one using leukemic cell line CTV-1 to prime and activate NK cells without significant expansion. A second trial utilizes EBV-LCL for NK cell expansion, achieving a mean 490-fold expansion in 21 days. The third utilizes a K562-based aAPC transduced with 4-1BBL (CD137L) and membrane-bound IL-15 (mIL-15), which achieved a mean NK expansion 277-fold in 21 days. Although, the NK cells expanded using K562-41BBL-mIL15 aAPC are highly cytotoxic in vitro and in vivo compared to unexpanded NK cells, and participate in ADCC, their proliferation is limited by senescence attributed to telomere shortening. More recently a 350-fold expansion of NK cells was reported using K562 expressing MICA, 4-1BBL and IL15. Our method of NK cell expansion described herein produces rapid proliferation of NK cells without senescence achieving a median 21,000-fold expansion in 21 days.
Vitiligo is an autoimmune disease characterized by destruction of melanocytes, leaving 0.5% of the population with progressive depigmentation. Current treatments offer limited efficacy. We report that modified inducible heat shock protein 70 (HSP70i) prevents T cell–mediated depigmentation. HSP70i is the molecular link between stress and the resultant immune response. We previously showed that HSP70i induces an inflammatory dendritic cell (DC) phenotype and is necessary for depigmentation in vitiligo mouse models. Here, we observed a similar DC inflammatory phenotype in vitiligo patients. In a mouse model of depigmentation, DNA vaccination with a melanocyte antigen and the carboxyl terminus of HSP70i was sufficient to drive autoimmunity. Mutational analysis of the HSP70i substrate-binding domain established the peptide QPGVLIQVYEG as invaluable for DC activation, and mutant HSP70i could not induce depigmentation. Moreover, mutant HSP70iQ435A bound human DCs and reduced their activation, as well as induced a shift from inflammatory to tolerogenic DCs in mice. HSP70iQ435A-encoding DNA applied months before spontaneous depigmentation prevented vitiligo in mice expressing a transgenic, melanocyte-reactive T cell receptor. Furthermore, use of HSP70iQ435A therapeutically in a different, rapidly depigmenting model after loss of differentiated melanocytes resulted in 76% recovery of pigmentation. Treatment also prevented relevant T cells from populating mouse skin. In addition, ex vivo treatment of human skin averted the disease-related shift from quiescent to effector T cell phenotype. Thus, HSP70iQ435A DNA delivery may offer potent treatment opportunities for vitiligo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.