We have used the Naval Research Laboratory ͑NRL͒ tight-binding ͑TB͒ method to calculate the generalized stacking fault energy and the Rice ductility criterion in the fcc metals Al, Cu, Rh, Pd, Ag, Ir, Pt, Au, and Pb. The method works well for all classes of metals, i.e., simple metals, noble metals, and transition metals. We compared our results with full potential linear-muffin-tin orbital and embedded atom method ͑EAM͒ calculations, as well as experiment, and found good agreement. This is impressive, since the NRL-TB approach only fits to first-principles full-potential linearized augmented plane-wave equations of state and band structures for cubic systems. Comparable accuracy with EAM potentials can be achieved only by fitting to the stacking fault energy.
Using ab initio calculations we have studied the energetics and the evolution of the electronic charge density with shear in three fcc metals exhibiting different deformation properties, aluminum, silver, and iridium. The charge redistribution described by the change in character of specific charge density critical points (cps), is ascertained from the values of the charge density, rho(0), and its three principal curvatures, rho( parallel parallel), rho(hh), and rho(vv), respectively. The change in character of cps correlates with the energetics. For all three metals, rho(hh) vanishes near the unstable stacking configuration. The symmetry or asymmetry of the charge redistribution, measured by rho(hh)/rho(vv), may be an important factor determining stacking fault energies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.