Magnetic resonance force microscopy (MRFM) is a scanning probe technique capable of detecting MRI signals from nanoscale sample volumes, providing a paradigmchanging potential for structural biology and medical research. Thus far, however, experiments have not reached sufficient spatial resolution for retrieving meaningful structural information from samples. In this work, we report MRFM imaging scans demonstrating a resolution of 0.9 nm and a localization precision of 0.6 nm in one dimension. Our progress is enabled by an improved spin excitation protocol furnishing us with sharp spatial control on the MRFM imaging slice, combined with overall advances in instrument stability. From a modeling of the slice function, we expect that our arrangement supports spatial resolutions down to 0.3 nm given sufficient signal-to-noise 1 arXiv:1908.04180v1 [physics.app-ph] 12 Aug 2019 ratio. Our experiment demonstrates the feasibility of sub-nanometer MRI and realizes an important milestone towards the three-dimensional imaging of macromolecular structures.
We report the development of a scanning force microscope based on an ultrasensitive silicon nitride membrane optomechanical transducer. Our development is made possible by inverting the standard microscope geometry-in our instrument, the substrate is vibrating and the scanning tip is at rest. We present topography images of samples placed on the membrane surface. Our measurements demonstrate that the membrane retains an excellent force sensitivity when loaded with samples and in the presence of a scanning tip. We discuss the prospects and limitations of our instrument as a quantum-limited force sensor and imaging tool.
We present a "nanoladder" geometry that minimizes the mechanical dissipation of ultrasensitive cantilevers. A nanoladder cantilever consists of a lithographically patterned scaffold of rails and rungs with feature size ∼100 nm. Compared to a rectangular beam of the same dimensions, the mass and spring constant of a nanoladder are each reduced by roughly 2 orders of magnitude. We demonstrate a low force noise of 158 zN and 190 zN in a 1 Hz bandwidth for devices made from silicon and diamond, respectively, measured at temperatures between 100-150 mK. As opposed to bottom-up mechanical resonators like nanowires or nanotubes, nanoladder cantilevers can be batch-fabricated using standard lithography, which is a critical factor for applications in scanning force microscopy.
We report spatially resolved measurements of static and fluctuating electric fields over conductive (Au) and nonconductive (SiO 2 ) surfaces. Using an ultrasensitive "nanoladder" cantilever probe to scan over these surfaces at distances of a few tens of nanometers, we record changes in the probe resonance frequency and damping that we associate with static and fluctuating fields, respectively. We find static and fluctuating fields to be spatially correlated. Furthermore, the fields are of similar magnitude for the two materials. We quantitatively describe the observed effects on the basis of trapped surface charges and dielectric fluctuations in an adsorbate layer. Our results are consistent with organic adsorbates significantly contributing to surface dissipation that affects nanomechanical sensors, trapped ions, superconducting resonators, and color centers in diamond.
Single nitrogen-vacancy (NV) defect centers in diamond have been exploited as single photon sources and spin qubits due to their room-temperature robust quantum light emission and long electron spin coherence times. They were coupled to a manifold of structures, such as optical cavities, plasmonic waveguides, and even injected into living cells to study fundamental interactions of various nature at the nanoscale. Of particular interest are applications of NVs as quantum sensors for local nanomagnetometry. Here, we employ a nanomanipulation approach to couple a single NV center in a nanodiamond to a single few-nm superparamagnetic iron oxide nanoparticle in a controlled way. After measuring via relaxometry the magnetic particle spin-noise, we take advantage of the crystal strain ms = ± 1 spin level separation to detect the superparamagnetic particle’s effect in presence of a driving AC magnetic field. Our experiments provide detailed insight in the behavior of such particles with respect to high frequency fields. The approach can be extended to the investigation of increasingly complex, but controlled nanomagnetic hybrid particle assemblies. Moreover, our results suggest that superparamagnetic nanoparticles can amplify local magnetic interactions in order to improve the sensitivity of diamond nanosensors for specific measurement scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.