Abstract:A set of materials has been prepared by sol-gel process containing different quantities of hydroxyapatite (0, 2.5 and 5% HAp w/w) using as silica precursors glycidyloxypropyltrimethoxysilane (GPTMS) and tri-ethoxyvinylsilane (VTES). In order to optimize the curing process to obtain sintherized systems (inorganic network) or hybrid systems (organic-inorganic) a TG and FTIR studies have been developed and degradation kinetic triplet parameters were obtained (the activation energy, pre-exponential factor, and function of degree of conversion). The kinetic study was analyzed by means of an integral isoconversional non-isothermal procedure (model free), and the kinetic model was determined by the Coats-Red-fern method and through the compensation effect (IKR). All the systems followed the n = 6 kinetic model. The addition of HAp increases the thermal stability of the systems. The isothermal degradation was simulated from non-isothermal data, and the curing process could be defined to obtain the two types of materials. Temperature under 250 º C allows the formation of hybrids networks.
The controlled release of active agents from a matrix has become increasingly important for oral, trans-dermal or implantable therapeutic systems, due to the advantages of safety, efficacy and patient convenience. Controlled-release hybrid (organicinorganic) sol-gel coating synthesis has been performed to create a sol with an active molecule included (procaine). Synthesis proce-dures included acid-catalysed hydrolysis, sol preparation, the addition of a procaine solution to the sol, and the subsequent gelation and drying. The alkoxide precursors used were triethoxyvinylsilane and tetraethyl-orthosilicate (TEOS) in molar ratios of 1:0, 9:1, 8:2 and 7:3. After the determination of the optimal synthesis parameters, the material was physicochemically characterised by silicon-29 nuclear magnetic resonance ( 29 Si-NMR) and Fourier transform infrared spectroscopy, contact angle analysis and electrochemical impedance spectroscopy tests. Finally, the materials were assayed in vitro for their ability to degrade by hydrolysis and to release procaine in a controlled manner. The sustained release of procaine over a 3-day period was demonstrated. A close correlation between release and degradation rates suggests that film degradation is the main mechanism underlying the control of release. Electrochemical analysis reveals the formation of pores and water uptake during the degradation. The quantity of TEOS is one of the principal parameters used to determine the kinetics of degradation and procaine release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.