The influence of an inviscid planar wall on the temporal development of the long-wavelength instability of a trailing vortex pair is formulated analytically and studied numerically. The center positions and deformation perturbations of the trailing vortices are marched forward in time via the vortex filament method based on Biot–Savart induction. An optimal perturbation analysis of the vortex system determines the wavenumber and initial condition that yield maximum perturbation growth for any instant in time. Direct integration of the vortex system highlights its sensitivity to initial conditions and the time dependence of the optimal wavenumber, which are not features of the classical free vortex pair. As the counter-rotating vortex pair approaches the wall, the wavenumber for maximum growth shifts to a higher value than what is predicted for the Crow instability of vortices in an unbounded fluid. The present analysis demonstrates that the local suppression of the Crow instability near a planar wall may be described without recourse to viscous fluid arguments.
Graphical abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.