LiMn 2 O 4 presents a first order structural transition at 290 K that was known to perturb the functioning as cathode in rechargeable Li batteries. We have solved the structure at 230 K and deciphered unambiguously the nature of this phase transition. The analysis of valence bond sums shows that the transition results from a partial charge ordering: two of the five Mn sites correspond to well-defined Mn 41 and the other three sites are close to Mn 31 ions. Charge ordering is accompanied by simultaneous orbital ordering due to the Jahn-Teller effect in Mn 31 ions. The microscopic details obtained from the structure are crucial for understanding the electron hopping persisting below the transition. [S0031-9007(98)07667-4]
We report a detailed study of steplike metamagnetic transitions in polycrystalline Pr0.5Ca0.5Mn0.95Co0.05O3. The steps have a sudden onset below a critical temperature, are extremely sharp (width <2x10(-4) T), and occur at critical fields which are linearly dependent on the absolute value of the cooling field in which the sample is prepared. Similar transitions are also observed at low temperature in non-Co doped manganites, including single crystal samples. These data show that the steps are an intrinsic property, qualitatively different from either previously observed higher temperature metamagnetic transitions in the manganites or metamagnetic transitions observed in other materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.