Large volumes of contaminated industrial wastewater have caused growing concern among researchers and environmentalists. Benzene, toluene, ethylbenzene, xylene, and styrene (BTEXS) cyclic hydrocarbons in industrial effluents are often completely stable to biodegradation and must be treated before disposal. In this context, using adsorption processes is a potential alternative for treating a wide range of organic pollutants, especially aromatic compounds in industrial wastewater. This study investigated the preparation of MCM-41 from silica; extracted from rice husk ash; MCM-41 was green synthesized to evaluate the effect of mesoporous used in BTEXS removal of an aqueous medium using the Taguchi method. The aqueous solution contains cyclic hydrocarbons was synthetically prepred based on real industrial effluent in concentrations of 50, 100, and 150 mg/l using MCM-41 catalysts, in doses of 0.1, 0.5, and 1g, at different pH values. In the present study, the optimum results obtained by Taguchi method analysis were pH =11, for duration of 60 minutes, the concentration of cyclic hydrocarbon solution BTEXS 100 mg/l, and nanoparticle dose of 0.5 g. The maximum BTEXS removal of 77.36% was achieved by the use of hydrogen peroxide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.