Cell-cell communication within the follicle involves many signaling molecules, and this process may be mediated by secretion and uptake of exosomes that contain several bioactive molecules including extra-cellular miRNAs. Follicular fluid and cells from individual follicles of cattle were grouped based on Brilliant Cresyl Blue (BCB) staining of the corresponding oocytes. Both Exoquick precipitation and differential ultracentrifugation were used to separate the exosome and non-exosomal fraction of follicular fluid. Following miRNA isolation from both fractions, the human miRCURY LNA™ Universal RT miRNA PCR array system was used to profile miRNA expression. This analysis found that miRNAs were present in both exosomal and non-exosomal fraction of bovine follicular fluid. We found 25 miRNAs differentially expressed (16 up and 9 down) in exosomes and 30 miRNAs differentially expressed (21 up and 9 down) in non-exosomal fraction of follicular fluid in comparison of BCB- versus BCB+ oocyte groups. Expression of selected miRNAs was detected in theca, granulosa and cumulus oocyte complex. To further explore the potential roles of these follicular fluid derived extra-cellular miRNAs, the potential target genes were predicted, and functional annotation and pathway analysis revealed most of these pathways are known regulators of follicular development and oocyte growth. In order to validate exosome mediated cell-cell communication within follicular microenvironment, we demonstrated uptake of exosomes and resulting increase of endogenous miRNA level and subsequent alteration of mRNA levels in follicular cells in vitro. This study demonstrates for the first time, the presence of exosome or non-exosome mediated transfer of miRNA in the bovine follicular fluid, and oocyte growth dependent variation in extra-cellular miRNA signatures in the follicular environment.
The purpose of this work is to address the relationship between transcriptional profile of embryos and the pregnancy success based on gene expression analysis of blastocyst biopsies taken prior to transfer to recipients. Biopsies (30-40% of the intact embryo) were taken from in vitro-produced day 7 blastocysts (n = 118), and 60-70% were transferred to recipients after reexpansion. Based on the success of pregnancy, biopsies were pooled in three groups (each 10 biopsies) namely: those resulting in no pregnancy (G1), resorbed embryos (G2), and those resulting in calf delivery (G3). Gene expression analysis of these groups was performed using home-made bovine preimplantation-specific cDNA array (219 clones) and BlueChip (with approximately 2,000 clones). Microarray data analysis results revealed a total of 52 and 58 genes were differentially regulated during comparison between G1 vs. G3 and G2 vs. G3. Biopsies resulted in calf delivery were enriched with genes necessary for implantation (COX2 and CDX2), carbohydrate metabolism (ALOX15), growth factor (BMP15), signal transduction (PLAU), and placenta-specific 8 (PLAC8). Biopsies from embryos resulting in resorption are enriched with transcripts involved protein phosphorylation (KRT8), plasma membrane (OCLN), and glucose metabolism (PGK1 and AKR1B1). Biopsies from embryos resulting in no pregnancy are enriched with transcripts involved inflammatory cytokines (TNF), protein amino acid binding (EEF1A1), transcription factors (MSX1, PTTG1), glucose metabolism (PGK1, AKR1B1), and CD9, which is an inhibitor of implantation. In conclusion, we generated direct candidates of blastocyst-specific genes which may play an important role in determining the fate of the embryo after transfer.
Understanding gene expression patterns in response to altered environmental conditions at different time points of the preimplantation period would improve our knowledge on regulation of embryonic development. Here we aimed to examine the effect of alternative in vivo and in vitro culture conditions at the time of major embryonic genome activation (EGA) on the development and transcriptome profile of bovine blastocysts. Four different blastocyst groups were produced under alternative in vivo and in vitro culture conditions before or after major EGA. Completely in vitro- and in vivo-produced blastocysts were used as controls. We compared gene expression patterns between each blastocyst group and in vivo blastocyst control group using EmbryoGENE's bovine microarray. The data showed that changing culture conditions from in vivo to in vitro or vice versa, either before or after the time of major EGA, had no effect on the developmental rates; however, in vitro conditions during that time critically influenced the transcriptome of the blastocysts produced. The source of oocyte had a critical effect on developmental rates and the ability of the embryo to react to changing culture conditions. Ontological classification highlighted a marked contrast in expression patterns for lipid metabolism and oxidative stress response between blastocysts generated in vivo versus in vitro, with opposite trends. Molecular mechanisms and pathways that are influenced by altered culture conditions during EGA were defined. These results will help in the development of new strategies to modify culture conditions at this critical stage to enhance the development of competent blastocysts.
The accumulation of maternal mRNA and protein during oogenesis for supporting oocyte maturation and the newly fertilised zygote marks the beginning of developmental process in mammals. MicroRNAs (approximately 18-22 nt long) which are known for post-transcriptional gene regulation are evidenced for their essential role during animal development. We, therefore, aimed to investigate the expression of miRNAs in immature and in vitro matured bovine oocytes, using heterologous miRNA array platform. To attain this, we used a mercury locked nucleic acids (LNA) array (Exiqon, Vedbaek, Denmark) microarray that consist of 454 capture probes for human, mouse and rat miRNAs as registered and annotated in the miRBase release 8.0 at The Wellcome Trust Sanger Institute. Our result revealed the differential expression of 59 miRNAs, of which 31 and 28 miRNAs were found to be preferentially expressed in immature and matured oocytes, respectively. Here, we also report the identification of 32 orthologous miRNAs using a heterologous approach. Expression profiling of selected miRNAs during preimplantation stage embryos showed a distinct temporal expression pattern. After target prediction for selected candidate miRNAs high ranking target mRNA were quantified in immature and matured oocytes and showed a reciprocal expression pattern between the miRNA and the predicted targets suggesting a cause and effect relationship.
BackgroundMicroRNAs are the major class of gene-regulating molecules playing diverse roles through sequence complementarity to target mRNAs at post-transcriptional level. Tightly regulated expression and interaction of a multitude of genes for ovarian folliculogenesis could be regulated by these miRNAs. Identification of them is the first step towards understanding miRNA-guided gene regulation in different biological functions. Despite increasing efforts in miRNAs identification across various species and diverse tissue types, little is known about bovine ovarian miRNAs. Here, we report the identification and characterization of miRNAs expressed in the bovine ovary through cloning, expression analysis and target prediction.ResultsThe miRNA library (5'-independent ligation cloning method), which was constructed from bovine ovary in this study, revealed cloning of 50 known and 24 novel miRNAs. Among all identified miRNAs, 38 were found to be new for bovine and were derived from 43 distinct loci showing characteristic secondary structure. While 22 miRNAs precursor loci were found to be well conserved in more than one species, 16 were found to be bovine specific. Most of the miRNAs were cloned multiple times, in which let-7a, let-7b, let-7c, miR-21, miR-23b, miR-24, miR-27a, miR-126 and miR-143 were cloned 10, 28, 13, 4, 11, 7, 6, 4 and 11 times, respectively. Expression analysis of all new and some annotated miRNAs in different intra-ovarian structures and in other multiple tissues showed that some were present ubiquitously while others were differentially expressed among different tissue types. Bta-miR-29a was localized in the follicular cells at different developmental stages in the cyclic ovary. Bio-informatics prediction, screening and Gene Ontology analysis of miRNAs targets identified several biological processes and pathways underlying the ovarian function.ConclusionResults of this study suggest the presence of miRNAs in the bovine ovary, thereby elucidate their potential role in regulating diverse molecular and physiological pathways underlying the ovarian functionality. This information will give insights into bovine ovarian miRNAs, which can be further characterized for their role in follicular development and female fertility as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.