The goal of this study was to investigate to what extent intermittent exposure to altitude in a hypobaric chamber can improve performance at sea-level. Over a 10-day period, elite male triathletes trained for 2 h each day on a cycle ergometer placed in a hypobaric chamber. Training intensity was 60-70% of the heart rate reserve. Eight subjects trained at a simulated altitude of 2.500 m (hypoxia group), the other eight remained at sea-level (sea-level group). Baseline measurements were done on a cycle ergometer at sea-level, which included an incremental test until exhaustion and a Wingate Anaerobic Test. Nine days after training in hypoxia, significant increases were seen in all important parameters of the maximal aerobic as well as the anaerobic test. A significant increase of 7.0% was seen in the mean maximal oxygen uptake per kilogram body weight (VO2max), and the mean maximal power output per kilogram body weight (Wmax) increased significantly by 7.4%. The mean values of both mean power per kilogram body weight and peak power per kilogram body weight increased significantly by 5.0%, and the time-to-peak decreased significantly by 37.7%. In the sea-level group, no significant changes were seen in the abovementioned parameters of both the maximal aerobic and the maximal anaerobic test at the second post-test. The results of this study indicate that intermittent hypobaric training can improve both the aerobic and the anaerobic energy-supply systems.
The effects of 30 min of cooling (15 degrees C water) and warming (40 degrees C water) on arm muscle function were measured. A reference condition (24 degrees C air) was included. Of nine young male subjects the maximal grip force (Fmax), the time to reach 66% of Fmax (rate of force buildup) and the maximal rhythmic grip frequency were determined, together with surface electromyographic activity (EMG) of a forearm muscle (flexor digitorum superficialis). The results showed that in contrast to warming, cooling resulted in a significant decrease of 20% in the Fmax and a significant 50% decrease in force build-up time and the maximal rhythmic grip frequency. The relationship between the root mean square value (rms) of the EMG and the static grip force did not change due to temperature changes. The median power frequency (MPF) in the power spectrum of the EMG signal decreased by 50% due to cooling but remained unchanged with heating. During a sustained contraction at 15% of Fmax (Fmax depending on the temperature) the increase in the rms value with contraction time was 90% larger in the warm condition and 80% smaller in the cold condition compared to the increase in the reference condition. The MPF value remained constant during the warm and reference conditions but in the cold it started at a 50% lower value and increased with contraction time.(ABSTRACT TRUNCATED AT 250 WORDS)
In an experimental study of load carrying the effects of mass (0, 5.4, 10.4 kg) and the type of support (on the shoulder or on waist) on parameters of physiological strain were quantified to determine the factor(s) which limit carrying time. Four categories of strain were investigated: metabolic (in terms of oxygen uptake), cardiovascular (in terms of heart rate), muscular (in terms of EMG activity) and skin pressure under the shoulder straps. Four young male subjects were tested on a treadmill using different combinations of load and speed. While standing, oxygen uptake was not influenced by the type or mass of the backpack, and averaged 10% maximal oxygen uptake. The heart rate increased significantly by 9 beats per min while standing wearing a backpack, independent of type of support or mass of backpack. While walking both the heart rate and the oxygen uptake were significantly influenced by the mass carried, but both types of strain remained below the tolerance limits for prolonged wear. Standing supporting a load did not significantly increase the root mean square value of the EMG signal of the trapezius pars descendens muscle. While walking, load carrying significantly increased the root mean square value, and, converted to force, the largest increase amounted to 2.7% of the maximal force for a load of 10.4 kg suspended from the shoulders. This was below levels of force producing fatigue, which was also indicated by an absence of changes in the median power frequency of the EMG signal.(ABSTRACT TRUNCATED AT 250 WORDS)
To determine the effects of wearing heavy footwear on physiological responses five male and five female subjects were measured while walking on a treadmill (4, 5.25, and 6.5 km.h-1) with different external loads (barefooted, combat boots, and waist pack). While walking without an external load the oxygen uptake, as a percentage of maximal oxygen uptake (%VO2max) of the men increased from 25% VO2max at 4 km.h-1 to 31% VO2max at 5.25 km.h-1 and to 42% VO2max at 6.5 km.h-1. The women had a significantly higher oxygen uptake of 30%, 40%, and 55% VO2max, respectively. In the most strenuous condition, walking at 6.5 km.h-1 with combat boots and waist pack (12 kg), the oxygen uptake for the men and women amounted to 53% and 75% VO2max, respectively. The heart rate showed a similar response to the oxygen uptake, the women having a heart rate which was 15-40 beats.min-1 higher than that of the men, depending on the experimental condition. The perceived exertion was shown to be greatly dependent on the oxygen uptake. From the results a regression formula was calculated predicting the oxygen uptake depending on the mass of the footwear, walking speed and body mass. It was concluded that the mass of footwear resulted in an increase in the energy expenditure which was a factor 1.9-4.7 times greater than that of a kilogram of body mass, depending on sex and walking speed.
There is evidence in the literature that the decrease of mean power frequency (MPF) during exercise is greater as a muscle become more fatigued. After strenuous exercise this phenomenon can last several days. It is usually assumed, however, that the MPF has a good reproducibility. In this study the reproducibility of the MPF of the surface electromyogram of the biceps brachii muscle was investigated for five subjects on 5 successive days. Force level, muscle length and skin temperature were kept constant. The results show that interindividual differences in MPF were large (SD 11.5 Hz). However, during these 5 days, the range in MPF for individual subjects was small. The SD of the trials within subjects and days was 2.0 Hz, while the SD trials excluded). It is hypothesized that this SD may be due to variations in the electrode replacement. It is concluded that the variability in MPF for a subject is small compared to the decrease of the MPF associated with muscle fatigue and which can therefore be determined reliably during longitudinal studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.