Abstract.A well-documented, publicly available, global data set of surface ocean carbon dioxide (CO 2 ) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO 2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO 2 , which had been subject to quality control (QC). Many additional CO 2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO 2 data points from the global oceans and coastal seas, spanning four decades . Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO 2 data collection and the importance of quantifying net global oceanic CO 2 uptake and its changes, sustained data synthesis and data access are priorities. Data coverage MotivationThe net absorption of CO 2 by the oceans, caused by rising atmospheric CO 2 concentrations since the industrial revolution, has been responsible for removing CO 2 equivalent to approximately 50 % of the fossil fuel and cement manufacturing emissions or about 30 % of the total anthropogenic emissions, including land use change (Sabine et al., 2004). Because of the availability of the carbonate ion, an important species of the dissolved inorganic carbon pool, and carbonate sediments, the oceans have a tremendous CO 2 uptake capacity and will, on timescales of ten to hundred thousand years, absorb all but a small fraction of the fossil CO 2 that has been and will be emitted (Archer et al., 1997). Meanwhile the changes in ocean CO 2 uptake, relying on factors such as ocean circulation and biology, will be among the decisive factors for the evolution of future atmospheric CO 2 concentrations and climate development (e.g., Friedlingstein et al., 2006;Riebesell et al., 2009). Presently there are two types of globally coordinated efforts that seek to resolve the dynamics of ocean CO 2 uptake through observations: repeat hydrography and surface ocean CO 2 observations (Gruber et al., 2010;Sabine et al., 2010). While repeat hydrography aims to assess variations in the ocean inventory of CO 2 on decadal timescales, surface ocean observations may resolve variations on seasonal to interannual timescales due to the higher sampling frequency. This high sampling frequency has been made possible by the advent of autonomous instruments and sensors for the nearcontinuous determination o...
SUMMARYThis paper identifies the important advances of the past decade that have delivered high precision pCO 2 observations from ships of opportunity (SOOP), robust decadal climatologies of air-sea CO 2 fluxes, and uniform data through coordinated quality control and inter comparisons activities, along with standardized instrumentation and procedures. The vision for the coming decade is to build on these successes to deliver an annual assessment and understanding of the regional and global trends in CO 2 exchanges between the ocean and the atmosphere. The core challenges are the maintenance and expansion of the sampling scales and the development of robust high precision in situ sensors.Highest priorities for the next 10 years for a global sea surface carbon observing system are: to deliver seasonally unbiased annual assessments of the regional and global trends in oceanatmosphere carbon fluxes. These should comprise monthly global flux maps that are used as constraints for atmospheric inversions in order to improve the assessment of the global carbon budget, including the terrestrial component. This will form an important link between the ocean CO 2 community and the global carbon budget assessment activities of the Global Carbon project (GCP) and its inputs to the periodic IPCC assessments. In order to achieve this, the following are necessary: to implement an effective and integrated multiplatform pCO 2 observing network that will reduce uncertainty in regional and global CO 2 flux estimates to ± 10 -15% of the annual mean flux; to advance sensor and instrument development, allowing the density of global surface ocean carbon observing networks to be increased by deployment on additional key SOOP lines, moorings, Lagrangian platforms, gliders and profiling floats. to understand and resolve the biogeochemical and physical mechanisms driving surface carbon, natural and anthropogenic CO 2 air-sea flux variability and long term trend sand a link to ocean acidification by incorporating a robust set of ancillary observations; to strengthen the capabilities of coupled climatecarbon models to forecast changes in the ocean uptake of CO 2 and the effectiveness of CO 2 emission mitigation strategies
A well documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968–2007). Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.