Density profiles in pedestal region (H-mode) are measured in HL-2A and the characteristics of the density pedestal are described. Cold particle deposition by Supersonic Molecular Beam Injection (SMBI) within the pedestal is verified. ELM mitigation by SMBI into the H-mode pedestal is demonstrated and the relevant physics is elucidated. The sensitivity of the effect to SMBI pressure and duration are studied. Following SMBI, the ELM frequency increases and ELM amplitude decreases for a finite duration period. Increases in ELM frequency of SMBI ELM f / 0 ELM f 2-3.5 are achieved. This experiment argues that the ELM mitigation results from an increase in Page 2 higher frequency fluctuations and transport events in the pedestal, which are caused by SMBI. These inhibit the occurrence of large transport events which span the entire pedestal width. The observed change in the density pedestal profiles and edge particle flux spectrum with and without SMBI supports this interpretation. An analysis of the experiment and a model shows that ELMs can be mitigated by SMBI with shallow particle penetration into the pedestal.
In this paper, an overview of the magnetohydrodynamic instabilities induced by energetic electrons on HL-2A is given and some new phenomena with high-power electron cyclotron resonance heating (ECRH) are presented. A toroidal Alfvén eigenmode with frequency from 200 to 350 kHz is identified during powerful ECRH. In the lower frequency range from 10 to 35 kHz, which is in the beta-induced Alfvén eigenmode frequency range, the coexistence of multi-mode is found during the high-power ECRH for the first time. The spectra become wide when the power is sufficiently high. The frequencies of the modes increase with and are much lower than the Alfvén frequency. The relationship between the mode frequency and (7/4 + Te/Ti)1/2 (Ti)1/2 can be obtained by statistical data analysis. Between the two previous frequency ranges, a group of new modes with frequencies from 50 to 180 kHz is observed with high-power ECRH and neutral beam injection heating together. The modes have clear frequency chirping within several milliseconds or several tens of milliseconds, which are identified as energetic particle mode like instabilities. The new features of the fishbone instability excited by energetic electrons are identified. It is interesting to find the frequency jump phenomena in the high-power ECRH. The difference between the low and high frequencies increases with ECRH power. The frequency jumps between 8 and 15 kHz within about 25 ms periodically, when the power is 1.2 MW.
Abstract. Significant experimental advances have been made on HL-2A tokamak along with substantial improvement and development of hardware. The three dimensional spectral structures of the low frequency zonal flow, the geodesic acoustic mode (GAM), and quasi-mode-like low frequency fluctuations have been observed simultaneously for the first time. In addition, the spectral structure of the density fluctuation at GAM frequency is also identified. A spontaneous particle transport barrier has been observed in Ohmic discharges without any external momentum input. The barrier is evidenced by particle perturbation study using modulated SMBI and microwave reflectometry. The non-local transport effect with new features induced by SMBI has been investigated. The e-fishbone instability excited by energetic electrons of non-Maxwellian distribution has been investigated via 10-channel CdTe hard x-ray detector. It is found that the e-fishbone is correlated with the existence of energetic electrons of 30-70 keV. The experiment shows that the suppression of m/n = 2/1 tearing modes can be sustained by ECRH with low modulation frequency of about 10 Hz. Extended confinement improvement is obtained after the mode suppression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.