Summary.A fully discrete finite element method for the Cahn-Hilliard equation with a logarithmic free energy based on the backward Euler method is analysed. Existence and uniqueness of the numerical solution and its convergence to the solution of the continuous problem are proved. Two iterative schemes to solve the resulting algebraic problem are proposed and some numerical results in one space dimension are presented.
The existence, uniqueness and regularity of the solution to a one-dimensional linear thermoelastic problem with unilateral contact of the Signorini type are established. A finite element approximation is described, and an error bound is derived. It is shown that if the time step is O(h2), then the error in L2 in the temperature and in L∞ in the displacement is O(h). Some numerical experiments are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.