Context. The new VISual and Infrared Telescope for Astronomy (VISTA) has started operations. Over its first five years it will be collecting data for six public surveys, one of which is the near-infrared Y JK s VISTA survey of the Magellanic Clouds system (VMC). This survey comprises the Large Magellanic Cloud (LMC), the Small Magellanic Cloud, the Magellanic Bridge connecting the two galaxies and two fields in the Magellanic Stream. Aims. This paper provides an overview of the VMC survey strategy and presents first science results. The main goals of the VMC survey are the determination of the spatially-resolved star-formation history and the three-dimensional structure of the Magellanic system. The VMC survey is therefore designed to reach stars as faint as the oldest main sequence turn-off point and to constrain the mean magnitude of pulsating variables such as RR Lyrae stars and Cepheids. This paper focuses on observations of VMC fields in the LMC obtained between November 2009 and March 2010. These observations correspond to a completeness of 7% of the planned LMC fields. Methods. The VMC data are comprised of multi-epoch observations which are executed following specific time constraints. The data were reduced using the VISTA Data Flow System pipeline with source catalogues, including astrometric and photometric corrections, produced and made available via the VISTA Science Archive. The VMC data will be released to the astronomical community following the European Southern Observatory's Public Survey policy. The analysis of the data shows that the sensitivity in each wave band agrees with expectations. Uncertainties and completeness of the data are also derived. Results. The first science results, aimed at assessing the scientific quality of the VMC data, include an overview of the distribution of stars in colour-magnitude and colour-colour diagrams, the detection of planetary nebulae and stellar clusters, and the K s band light-curves of variable stars. Conclusions. The VMC survey represents a tremendous improvement, in spatial resolution and sensitivity, on previous panoramic observations of the Magellanic system in the near-infrared, providing a powerful complement to deep observations at other wavelengths.
We analyse deep images from the VISTA survey of the Magellanic Clouds in the Y JK s filters, covering 14 deg 2 (10 tiles), split into 120 subregions, and comprising the main body and Wing of the Small Magellanic Cloud (SMC). We apply a colour-magnitude diagram reconstruction method that returns their best-fitting star formation rate SFR(t), age-metallicity relation (AMR), distance and mean reddening, together with 68% confidence intervals. The distance data can be approximated by a plane tilted in the East-West direction with a mean inclination of 39 • , although deviations of up to ±3 kpc suggest a distorted and warped disk. After assigning to every observed star a probability of belonging to a given age-metallicity interval, we build high-resolution population maps. These dramatically reveal the flocculent nature of the young star-forming regions and the nearly smooth features traced by older stellar generations. They document the formation of the SMC Wing at ages < 0.2 Gyr and the peak of star formation in the SMC Bar at ∼ 40 Myr. We clearly detect periods of enhanced star formation at 1.5 Gyr and 5 Gyr. The former is possibly related to a new feature found in the AMR, which suggests ingestion of metal-poor gas at ages slightly larger than 1 Gyr. The latter constitutes a major period of stellar mass formation. We confirm that the SFR(t) was moderately low at even older ages.
The VISTA near-infrared Y JK s survey of the Magellanic System (VMC) is collecting deep K s -band time-series photometry of pulsating stars hosted by the two Magellanic Clouds and their connecting Bridge. Here we present Y, J, K s light curves for a sample of 717 Small Magellanic Cloud (SMC) Classical Cepheids (CCs). These data, complemented with our previous results and V magnitude from literature, allowed us to construct a variety of period-luminosity and period-Wesenheit relationships, valid for Fundamental, First and Second Overtone pulsators. These relations provide accurate individual distances to CCs in the SMC over an area of more than 40 deg 2 . Adopting literature relations, we estimated ages and metallicities for the majority of the investigated pulsators, finding that: i) the age distribution is bimodal, with two peaks at 120±10 and 220±10 Myr; ii) the more metal-rich CCs appear to be located closer to the centre of the galaxy. Our results show that the three-dimensional distribution of the CCs in the SMC, is not planar but heavily elongated for more than 25-30 kpc approximately in the east/north-east towards south-west direction. The young and old CCs in the SMC show a different geometric distribution. Our data support the current theoretical scenario predicting a close encounter or a direct collision between the Clouds some 200 Myr ago and confirm the presence of a Counter-Bridge predicted by some models. The high precision three-dimensional distribution of young stars presented in this paper provides a new testbed for future models exploring the formation and evolution of the Magellanic System.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.