[1] This work builds on and extends our previous effort (Tsyganenko et al., 2003) to develop a dynamical model of the storm-time geomagnetic field in the inner magnetosphere, using space magnetometer data taken during 37 major events in 1996-2000 and concurrent observations of the solar wind and interplanetary magnetic field (IMF). The essence of the approach is to derive from the data the temporal variation of all major current systems contributing to the distant geomagnetic field during the entire storm cycle, using a simple model of their growth and decay. Each principal source of the external magnetic field (magnetopause, cross-tail current sheet, axisymmetric and partial ring currents, and Birkeland current systems) is driven by a separate variable, calculated as a time integral of a combination of geoeffective parameters, where N, V, and B s are the solar wind density, speed, and the magnitude of the southward component of the IMF, respectively. In this approach we assume that each source has its individual relaxation timescale and residual quiet-time strength, and its partial contribution to the total field depends on the entire history of the external driving of the magnetosphere during a storm. In addition, the magnitudes of the principal field sources were assumed to saturate during extremely large storms with abnormally strong external driving. All the parameters of the model field sources, including their magnitudes, geometrical characteristics, solar wind/IMF driving functions, decay timescales, and saturation thresholds, were treated as free variables, and their values were derived from the data. As an independent consistency test, we calculated the expected Dst variation on the basis of the model output at Earth's surface and compared it with the actual observed Dst. A good agreement (cumulative correlation coefficient R = 0.92) was found, in spite of the fact that $90% of the spacecraft data used in the fitting were taken at synchronous orbit and beyond, while only 3.7% of those data came from distances 2.5 R 4 R E . The obtained results demonstrate the possibility to develop a truly dynamical model of the magnetic field, based on magnetospheric and interplanetary data and allowing one to reproduce and forecast the entire process of a geomagnetic storm, as it unfolds in time and space. Citation: Tsyganenko, N. A., and M. I. Sitnov (2005), Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms,
[1] We report THEMIS observations of a dipolarization front, a sharp, large-amplitude increase in the Z-component of the magnetic field. The front was detected in the central plasma sheet sequentially at X = À20.1 R E (THEMIS P1 probe), at X = À16.7 R E (P2), and at X = À11.0 R E (P3/P4 pair), suggesting its earthward propagation as a coherent structure over a distance more than 10 R E at a velocity of 300 km/s. The front thickness was found to be as small as the ion inertial length. Comparison with simulations allows us to interpret the front as the leading edge of a plasma fast flow formed by a burst of magnetic reconnection in the midtail.
[1] Dipolarization fronts (DFs), characterized by a strong and steep increase of the tail magnetic field component B z normal to the neutral plane and preceded by a much less negative dip of B z , are reported in many observations of bursty bulk flows and substorm activations throughout the whole Earth's magnetotail. It is shown that similar structures appear in full-particle simulations with open boundaries in a transient regime before the steady reconnection in the original Harris current sheet driven out of the equilibrium by the initial X-line perturbation is established. Being secondary reconnection structures propagating with the Alfvén speed, DFs are different from the magnetic field pileup regions reported in earlier simulations with closed boundaries. They also differ from the secondary plasmoids with bipolar B z changes reported in earlier fluid simulations and particle simulations with open boundaries. In spite of their transient nature, DFs are found to form when the force balance is already restored in the system, which justifies their interpretation as a nonlinear stage of the tearing instability developing in two magnetotail-like structures on the left and on the right of the initial central X-line. Both electrons and ions are magnetized at the front of the dipolarization wave. In contrast, in its trail, ions are unmagnetized and move slower compared to the E Â B drift, whereas electrons either follow that drift being completely magnetized or move faster, forming super-Alfvénic jets. In spite of the different motions of electrons and ions, the growth of the front is not accompanied by the corresponding growth of the electrostatic field and the energy dissipation in fronts is dominated by ions.
[1] We present first results of the magnetospheric magnetic field modeling, based on large sets of spacecraft data and a high-resolution expansion for the field of equatorial currents. In this approach, the field is expanded into a sum of orthogonal basis functions of different scales, capable to reproduce arbitrary radial and azimuthal variations of the geomagnetic field, including its noon-midnight and dawn-dusk asymmetries. Combined with the existing method to model the global field of Birkeland currents, the new approach offers a natural way to consistently represent the field of both the tail and symmetrical/partial ring currents. The proposed technique is particularly effective in the modeling of the inner magnetosphere, a stumbling block for the first-principle approaches. The new model has been fitted to various subsets of data from Geotail, Polar, Cluster, IMP-8, and GOES-8, GOES-9, GOES-10, and GOES-12 spacecraft, corresponding to different activity levels, solar wind IMF conditions, and storm phases. The obtained maps of the magnetic field reproduce most basic features of the magnetospheric structure, their dependence on the geomagnetic activity and interplanetary conditions, as well as characteristic changes associated with the main and recovery phases of magnetic storms.
The Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) on the two Van Allen Probes spacecraft is the magnetosphere ring current instrument that will provide data for answering the three over-arching questions for the Van Allen Probes Program: RBSPICE will determine "how space weather creates the storm-time ring current around Earth, how that ring current supplies and supports the creation of the radiation belt populations," and how the ring current is involved in radiation belt losses. RBSPICE is a time-of-flight versus total energy instrument that measures ions over the energy range from ∼20 keV to ∼1 MeV. RBSPICE will also measure electrons over the energy range ∼25 keV to ∼1 MeV in order to provide instrument background information in the radiation belts. A description of the instrument and its data products are provided in this chapter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.