Metallurgical coke is a common fuel in smelting shaft furnaces. The properties of the coke largely determine furnace performance. If coking additives are used to stabilize the properties of the coal batch, coke of increased hot strength may be obtained, with reactivity CRI = 18-22% and density of the pieces 1200-1400 kg/m 3 . Industrial tests on a slag cotton cupola furnace establish the variation in its performance when using experimental coke, with reduction in coke consumption by 0.20-0.25% and increase in heat input by 90 kW on average. The proportion of heat in the melt is increased here, along with the degree of incomplete combustion. The heat consumption in melting the initial components declines by 2.3% on average, while the total thermal efficiency of the system decreases by 1.8% for each additional 10% of the experimental coke.
Information about character of burden materials behavior inside a blast furnace at its different horizons enables to increase control efficiency of BF heat running. The elaborated complex of methodologies for carbon materials and iron ore raw materials properties study enables to simulate their behavior at the horizon of iron ore materials reducing, in the viscoplastic zone, at the horizon of iron ore raw materials smelting and its interaction with coke filling. A vertical electric resistance shaft furnace with a tube carbon heater was used as a base equipment for simulation of burden behavior in the reduction zone and smelting zone, as well as for simulation of iron ore burden melt outflow through coke filling. Burden materials preparation to the experiment concluded in crushing of iron ore component followed by 3–5 mm fraction extraction and a mixing it with 3–5 mm fraction of brown coal semi-coke in relation 2:1 for further heating-reduction treatment. The heating-reduction treatment of the mixture charged in the electric furnace simulates the reducing zone and is carried out by a slow heating of the iron ore component and reducing agent mixture from 20 up to 980–1020 ºС. The methodology of determination of lump carbon materials combustibility in the highly heated air blast flow was developed for the complex of equipment based on the shaft electric resistance furnace and aimed at testing of burning process of carbon samples of technological fuels. The combustibility was determined under conditions of burnt sample heating in the temperature range from 500 up to 1500 °C with an accuracy of ±10 °С. The temperature of air blast flow (21 % vol. of oxygen at natural moisture) was set in the range from 120 up to 1200 °С and was kept with an accuracy of ±12 °С. The burnt sample mass, volume of air blast and its velocity was correlated to obtaining of complex non-dimensional Re factor (Reinolds number) more than 100, that guaranteed a reliable process running in the combustion area with no risk of transferring to gasification process. Based on GOST 26517–85 (“Iron ores, sinter and pellets”) a methodology was elaborated for determining of parameters of iron ore materials status in the viscoplastic zone. The methodology comprises heating of preliminary reduced sample of a tested iron ore material in an inert gas and determination of softening temperature and smelting end by a hard rod sinking into the material layer under external pressure action. The temperature at which the layer shrinkage reaches level of 2% during heating, was taken as the softening temperature of the iron ore material. The sinking of the rod into the material by 80% was taken as the temperature of the beginning of the material melting. The interval softening-melting was determined as the difference between melting temperature and softening temperature (at sample shrinkage by 2 %).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.