Artificial intelligence (AI) is a branch of informatics concerned with developing programs capable of imitating certain functions of the human mind. AI technologies are applied in different areas of medicine, including ophthalmology. Acquisition and analysis of images are critical for diagnosing and treating ophthalmic disorders, particularly retinal diseases. This paper reviews the use of AI algorithms for diagnosing and treating retinal disorders. Modern AI algorithms are trained to analyze images obtained by digital retinal photography, optical coherence tomography, and optical coherence tomography angiography. The most promising AI algorithms are those used for screening and treating chronic diseases (e.g., diabetic retinopathy, diabetic macular edema, age-related macular degeneration) to provide a personalized management strategy. Therefore, developing standards regulating AI technology application and standards providing a reliable evaluation of safety, accuracy, and reliability of AI-based system functioning is particularly important for healthcare. Keywords: artificial intelligence, computer vision, ophthalmic screening, diabetic retinopathy, diabetic macular edema, age-related macular degeneration. For citation: Katalevskaya E.A., Katalevskiy D.Yu., Tyurikov M.I. et al. Future of artificial intelligence for the diagnosis and treatment of retinal diseases. Russian Journal of Clinical Ophthalmology. 2022;22(1):36–43 (in Russ.). DOI: 10.32364/2311-7729-2022-22-1-36-43.
Purpose. Development of artificial intelligence (AI) algorithms for diagnosing of diabetic retinopathy (DR), diabetic macular edema (DME), age-related macular degeneration (AMD), vitreomacular interface abnormalities (VMA) through the analysis of OCT scans and fundus images. Material and methods. Fundus images of patients with DR and DME, OCT scans of patients with DME, AMD and VMA were used as training and validation databases. The volume of training databases was 3600 fundus images and 10 000 OCT scans, the volume of validation databases was 400 fundus images and 1000 OCT scans. For fundus images analysis algorithms accuracy, sensitivity, specificity, AUROC were calculated for the following structures: microaneurysms, intraretinal hemorrhages, hard exudates, soft exudates, retinal and optic disc neovascularization, preretinal hemorrhages, epiretinal fibrosis, laser coagulates. For OCT scan analysis algorithms, these metrics were calculated for the features: intraretinal cysts, subretinal fluid, pigment epithelium detachment, subretinal hyperreflective material, drusen, epiretinal membrane, full thickness macular hole, lamellar macular hole, vitreomacular traction. Results. For fundus images analysis algorithms, accuracy exceeded 93% for all features except soft exudates (88.3%) and neovascularization (88.0%), sensitivity exceeded 90% for all features except neovascularization (80.2%) and epiretinal fibrosis (72.5%), specificity exceeded 91% for all features except microaneurysms (80.5%), hard exudates (83.5%) and soft exudates (88.7%), AUROC exceeded 0.90 for all signs except epiretinal fibrosis (0.88), neovascularization (0.87), preretinal hemorrhages (0.89). For OCT analysis algorithms, accuracy exceeded 93% for all features, sensitivity exceeded 90% for all features except lamellar macular hole (87.22%), specificity exceeded 93% for all features, AUROC exceeded 0.93 for all features. Conclusion. An algorithm for high precision segmentation of pathological signs has been developed. Based on these AI algorithms, the Retina.AI ophthalmological platform was developed, which allows automated analysis of OCT scans and fundus images and diagnosing of DR, DME, AMD and VMA. The platform is available for testing at https://www.screenretina.com/ Keywords: artificial intelligence, ophthalmic screening, diabetic retinopathy, diabetic macular edema, age-related macular degeneration, vitreomacular interface abnormalities
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.