LetEbe a uniformly convex and uniformly smooth real Banach space, and letE* be its dual. LetA : E→ 2E*be a bounded maximal monotone map. Assume thatA−1(0) ≠ Ø. A new iterative sequence is constructed which convergesstronglyto an element ofA−1(0). The theorem proved complements results obtained on strong convergence ofthe proximal point algorithmfor approximating an element ofA−1(0) (assuming existence) and also resolves an important open question. Furthermore, this result is applied to convex optimization problems and to variational inequality problems. These results are achieved by combining a theorem of Reich on the strong convergence of the resolvent of maximal monotone mappings in a uniformly smooth real Banach space and new geometric properties of uniformly convex and uniformly smooth real Banach spaces introduced by Alber, with a technique of proof which is also of independent interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.