All the above observations substantiated by unified computational and in vitro experimental approaches suggested its potential role as a therapeutic anti-cancer agent against HCC.
5' Nucleotidase (5' NUC) is a ubiquitously distributed enzyme known to be present in snake venoms (SV) that is responsible primarily for causing dysregulation of physiological homeostasis in humans by inducing anticoagulant effects and by inhibiting platelet aggregation. It is also known to act synergistically with other toxins to exert a more pronounced anti-coagulant effect during envenomation. Its structural and functional role is not yet ascertained clearly. The 3D structure of snake venom 5' nucleotidase (SV-5' NUC) is not yet known and was predicted by us for the first time using a comparative homology modeling approach using Demansia vestigiata protein sequence. The accuracy and stability of the predicted SV-5' NUC structure were validated using several computational approaches. Key interactions of SV-5' NUC were studied using experimental studies/molecular docking analysis of the inhibitors vanillin, vanillic acid and maltol. All these inhibitors were found to dock favorably following pharmacologically relevant absorption, distribution, metabolism and excretion (ADME) profiles. Further, atomic level docking interaction studies using inhibitors of the SV-5' NUC active site revealed amino acid residues Y65 and T72 as important for inhibitor-(SV-5' NUC) interactions. Our in silico analysis is in good agreement with experimental inhibition results of SV-5' NUC with vanillin, vanillic acid and maltol. The present study should therefore play a guiding role in the experimental design of new SV-5' NUC inhibitors for snake bite management. We also identified a few pharmacophoric features essential for SV-5' NUC inhibitory activity that can be utilized further for the discovery of putative anti-venom agents of therapeutic value for snake bite management.
Due to the toxic pathophysiological role of snake venom phospholipase A2 (PLA2 ), its compelling limitations to anti-venom therapy in humans and the need for alternative therapy foster considerable pharmacological interest towards search of PLA2 specific inhibitors. In this study, an integrated approach involving homology modeling, molecular dynamics and molecular docking studies on VRV-PL-V (Vipera russellii venom phospholipase A2 fraction-V) belonging to Group II-B secretory PLA2 from Daboia russelli pulchella is carried out in order to study the structure-based inhibitor design. The accuracy of the model was validated using multiple computational approaches. The molecular docking study of this protein was undertaken using different classes of experimentally proven, structurally diverse synthetic inhibitors of secretory PLA2 whose selection is based on IC50 value that ranges from 25 μM to 100 μM. Estimation of protein-ligand contacts by docking analysis sheds light on the importance of His 47 and Asp 48 within the VRV-PL-V binding pocket as key residue for hydrogen bond interaction with ligands. Our virtual analysis revealed that compounds with different scaffold binds to the same active site region. ADME analysis was also further performed to filter and identify the best potential specific inhibitor against VRV-PL-V. Additionally, the e-pharmacophore was generated for the best potential specific inhibitor against VRV-PL-V and reported here. The present study should therefore play a guiding role in the experimental design of VRV-PL-V inhibitors that may provide better therapeutic molecular models for PLA2 recognition and anti-ophidian activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.