Concentrations of organically bound tritium (OBT) and tritiated water (HTO) were measured over two growing seasons in vegetation and soil samples obtained in the vicinity of four nuclear facilities and two background locations in Canada. At the background locations, with few exceptions, OBT concentrations were higher than HTO concentrations: OBT/HTO ratios in vegetation varied between 0.3 and 20 and values in soil varied between 2.7 and 15. In the vicinity of the four nuclear facilities OBT/HTO ratios in vegetation and soils deviated from the expected mean value of 0.7, which is used as a default value in environmental transfer models. Ratios of the OBT activity concentration in plants ([OBT]plant) to the OBT activity concentration in soils ([OBT]soil) appear to be a good indicator of the long-term behaviour of tritium in soil and vegetation. In general, OBT activity concentrations in soils were nearly equal to OBT activity concentrations in plants in the vicinity of the two nuclear power plants. [OBT]plant/[OBT]soil ratios considerably below unity observed at one nuclear processing facility represents historically higher levels of tritium in the environment. The results of our study reflect the dynamic nature of HTO retention and OBT formation in vegetation and soil during the growing season. Our data support the mounting evidence suggesting that some parameters used in environmental transfer models approved for regulatory assessments should be revisited to better account for the behavior of HTO and OBT in the environment and to ensure that modelled estimates (e.g., plant OBT) are appropriately conservative.
Uranium and related decay-chain radionuclides remain important subjects of study for a number of reasons. Uranium has the potential to be chemically toxic near mining and processing facilities, and the decay-chain radionuclides can contribute substantially to radiation dose. Establishing an air quality standard for U in Canada has also been tentatively based on its accumulation and toxicity in soil. This paper summarizes two studies. The first investigated the mobility in soil, uptake by plants and ecotoxicity of U near a U refining facility. Because of the presence of co-contaminants, a large number of other elements were measured to fully characterize the samples. In general, the soil solid/liquid partition coefficients, Kd, for U were high enough that leaching is not a dominant process. Plant/soil concentration ratios (CRs) were not consistently different compared to background sites. The second study measured plant/soil CRs for 210 Pb, 210 Po, 226 Ra, 228 Ra, 228 Th, 230 Th, 232 Th and 238 U on a series of sites across Canada, with emphasis on background sites with possible human food-chain connections. Secular equilibrium was rarely observed, especially in plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.