In the future, when fossil fuels are exhausted, alternative energy sources will be essential for everyday needs. Hydrogen-based energy can play a vital role in this aspect. This energy is green, clean, and renewable. Electrochemical hydrogen devices have been used extensively in nuclear power plants to manage hydrogen-based renewable fuel. Doped zirconate materials are commonly used as an electrolyte in these electrochemical devices. These materials have excellent physical stability and high proton transport numbers, which make them suitable for multiple applications. Doping enhances the physical and electronic properties of zirconate materials and makes them ideal for practical applications. This review highlights the applications of zirconate-based proton-conducting materials in electrochemical cells, particularly in tritium monitors, tritium recovery, hydrogen sensors, and hydrogen pump systems. The central section of this review summarizes recent investigations and provides a comprehensive insight into the various doping schemes, experimental setup, instrumentation, optimum operating conditions, morphology, composition, and performance of zirconate electrolyte materials. In addition, different challenges that are hindering zirconate materials from achieving their full potential in electrochemical hydrogen devices are discussed. Finally, this paper lays out a few pathways for aspirants who wish to undertake research in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.