[1] An overview is presented of the meteorological and thermodynamic data obtained during the Radiative Atmospheric Divergence using Atmospheric Radiation Measurement (ARM) Mobile Facility, Geostationary Earth Radiation Budget (GERB) data, and African Monsoon Multidisciplinary Analysis (AMMA) stations (RADAGAST) experiment in Niamey, Niger, in 2006. RADAGAST combined data from the ARM Program Mobile Facility (AMF) at Niamey airport with broadband satellite data from the GERB instrument on Meteosat-8. The experiment was conducted in collaboration with the AMMA project. The focus in this paper is on the variations through the year of key surface and atmospheric variables. The seasonal advance and retreat of the Intertropical Front and the seasonal changes in near-surface variables and precipitation in 2006 are discussed and contrasted with the behavior in 2005 and with long-term averages. Observations from the AMF at Niamey airport are used to document the evolution of near-surface variables and of the atmosphere above the site. There are large seasonal changes in these variables, from the arid and dusty conditions typical of the dry season to the much moister and more cloudy wet season accompanying the arrival and intensification of the West African monsoon. Back trajectories show the origin of the air sampled at Niamey and profiles for selected case studies from rawinsondes and from a micropulse lidar at the AMF site reveal details of typical atmospheric structures. Radiative fluxes and divergences are discussed in the second part of this overview, and the subsequent papers in this special section explore other aspects of the measurements and of the associated modeling.
The major objective of this study is to re-evaluate the ocean-land transport of moisture for rainfall in West Africa using 1979-2008 NCEP-NCAR reanalysis data. The vertically integrated atmospheric water vapor flux for the surface-850 hPa is calculated to account for total low-level moisture flux contribution to rainfall over West Africa. Analysis of mean monthly total vapor fluxes shows a progressive penetration of the flux into West Africa from the south and west. During spring (April-June), the northward flux forms a "moisture river" transporting moisture current into the Gulf of Guinea coast. In the peak monsoon season (JulySeptember), the southerly transport weakens, but westerly transport is enhanced and extends to 20°N owing to the strengthening West African jet off the west coast. Mean seasonal values of total water vapor flux components across boundaries indicate that the zonal component is the largest contributor to mean moisture transport into the Sahel, while the meridional transport contributes the most over the Guinea coast. For the wet years of the Sahel rainy season (July-September), active anomalies are displaced farther north compared to the long-term average. This includes the latitude of the intertropical front (ITF), the extent of moisture flux, and the zone of strong moisture flux convergence, with an enhanced westerly flow. For the dry Sahel years, the opposite patterns are observed. Statistically significant positive correlations between the zonal moisture fluxes and Sudan-Sahel rainfall totals are most pronounced when the zonal fluxes lead by 1-4 pentads. However, although weak, they still are statistically significant at lags 3 and 4 for meridional moisture fluxes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.