In this work, a general class of discrete time bidirectional associative memory (BAM) neural networks (NNs) is investigated. In this model, discrete and continuously distributed time delays are taken into account. By utilizing this novel method, which incorporates the approach of Kirchhoff’s matrix tree theorem in graph theory, Continuation theorem in coincidence degree theory and Lyapunov function, we derive a few sufficient conditions to ensure the existence, uniqueness and exponential stability of the periodic solution of the considered model. At the end of this work, we give a numerical simulation that shows the effectiveness of this work.
In this work, the exponential stability problem of impulsive recurrent neural networks is investigated; discrete time delay, continuously distributed delay and stochastic noise are simultaneously taken into consideration. In order to guarantee the exponential stability of our considered recurrent neural networks, two distinct types of sufficient conditions are derived on the basis of the Lyapunov functional and coefficient of our given system and also to construct a Lyapunov function for a large scale system a novel graph-theoretic approach is considered, which is derived by utilizing the Lyapunov functional as well as graph theory. In this approach a global Lyapunov functional is constructed which is more related to the topological structure of the given system. We present a numerical example and simulation figures to show the effectiveness of our proposed work.
This paper concerns the issues of exponential stability in Lagrange sense for a class of stochastic Cohen–Grossberg neural networks (SCGNNs) with Markovian jump and mixed time delay effects. A systematic approach of constructing a global Lyapunov function for SCGNNs with mixed time delays and Markovian jumping is provided by applying the association of Lyapunov method and graph theory results. Moreover, by using some inequality techniques in Lyapunov-type and coefficient-type theorems we attain two kinds of sufficient conditions to ensure the global exponential stability (GES) through Lagrange sense for the addressed SCGNNs. Ultimately, some examples with numerical simulations are given to demonstrate the effectiveness of the acquired result.
In this work, we mainly focus on uncertain delayed neural network system with inertial term. Here, the existence, uniqueness, and exponential stability of inertial neural networks are derived without shifting the second order differential system into first order through substituting variables. Initially, we construct a proper Lyapunov–Krasovskii functional to investigate the stability of novel uncertain delayed inertial neural networks, which is different from the classical Lyapunov functional approach. By utilizing the Kirchhoff’s matrix tree theorem, Cauchy–Schwartz inequality, homeomorphism theorem, and some inequality techniques, the necessary and sufficient conditions are derived for the designed framework. Subsequently, to exhibit the strength of this outcome, we framed a quantitative example.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.