The osteosclerotic (oc/oc) mouse, a genetically distinct murine mutation that has a functional defect in its osteoclasts, also has rickets and shows an altered endochondral ossification in the epiphyseal growth plate. The disorder is morphologically characterized by an abnormal extension of hypertrophic cartilage at 10 days after birth, which is later (21 days after birth) incorporated into the metaphyseal woven bone without breakdown of the cartilage matrix following vascular invasion of chondrocyte lacunae. In situ hybridization revealed that the extending hypertrophic chondrocytes expressed type I and type II collagen mRNA, as well as that of type X collagen and that the osteoblasts in the metaphysis expressed type II and type X collagen mRNA, in addition to type I collagen mRNA. The topographic distribution of the signals suggests a possible co-expression of each collagen gene in the individual cells. Immunohistochemically, an overlapping deposition of type I, type II, and type X collagen was observed in both the extending cartilage and metaphyseal bony trabeculae. Such aberrant gene expression and synthesis of collagen indicate that pathologic ossification takes place in the epiphyseal/metaphyseal junction of oc/oc mouse femur in different way than in normal endochondral ossification. This abnormality is probably not due to a developmental disorder in the epiphyseal plate but to the failure in conversion of cartilage into bone, since the epiphyseal plate otherwise appeared normal, showing orderly stratified zones with a proper expression of cartilage-specific genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.