Abstract. We explore numerically the feasibility of enhancing the mixing capability of microchannels by employing the Weierstrass fractal function to generate a pattern of V-shaped ridges on the channel floor. Motivated by experimental limitations such as the finite resolution (∼10 µm) associated with rapid prototyping through soft lithography techniques, we study the influence on the quality of mixing of having finite width ridges. The mixing capability of the designs studied is evaluated using an entropic measure and the designs are optimized with respect to: the distances between the ridges and the position range of their tip along the width of the channels. The results are evaluated with respect to the benchmarks established by the very successful staggered herring bone (SHB) design. We find that the use of a non periodic protocol to generate the geometry of the bottom surface of the microchannels can lead to consistently larger entropic mixing indices than in cyclic structures. Furthermore, since the optimization curves (mixing index vs. geometric parameters) are broader at the maximum for fractal microchannels than for their SHB counterparts, the microchannel designs using the Weierstrass fractal function are less sensitive to experimental uncertainties.
PACS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.